ﻻ يوجد ملخص باللغة العربية
Neural Networks (NNs) are the method of choice for building learning algorithms. Their popularity stems from their empirical success on several challenging learning problems. However, most scholars agree that a convincing theoretical explanation for this success is still lacking. This article surveys the known approximation properties of the outputs of NNs with the aim of uncovering the properties that are not present in the more traditional methods of approximation used in numerical analysis. Comparisons are made with traditional approximation methods from the viewpoint of rate distortion. Another major component in the analysis of numerical approximation is the computational time needed to construct the approximation and this in turn is intimately connected with the stability of the approximation algorithm. So the stability of numerical approximation using NNs is a large part of the analysis put forward. The survey, for the most part, is concerned with NNs using the popular ReLU activation function. In this case, the outputs of the NNs are piecewise linear functions on rather complicated partitions of the domain of $f$ into cells that are convex polytopes. When the architecture of the NN is fixed and the parameters are allowed to vary, the set of output functions of the NN is a parameterized nonlinear manifold. It is shown that this manifold has certain space filling properties leading to an increased ability to approximate (better rate distortion) but at the expense of numerical stability. The space filling creates a challenge to the numerical method in finding best or good parameter choices when trying to approximate.
In this paper, we introduce adaptive neuron enhancement (ANE) method for the best least-squares approximation using two-layer ReLU neural networks (NNs). For a given function f(x), the ANE method generates a two-layer ReLU NN and a numerical integrat
In this paper, we study adaptive neuron enhancement (ANE) method for solving self-adjoint second-order elliptic partial differential equations (PDEs). The ANE method is a self-adaptive method generating a two-layer spline NN and a numerical integrati
In this paper, we develop a new neural network family based on power series expansion, which is proved to achieve a better approximation accuracy in comparison with existing neural networks. This new set of neural networks embeds the power series exp
Deep learning is a powerful tool for solving nonlinear differential equations, but usually, only the solution corresponding to the flattest local minimizer can be found due to the implicit regularization of stochastic gradient descent. This paper pro
We establish in this work approximation results of deep neural networks for smooth functions measured in Sobolev norms, motivated by recent development of numerical solvers for partial differential equations using deep neural networks. The error boun