ﻻ يوجد ملخص باللغة العربية
Modern polarization theory yields surface bound charge associated with spontaneous polarization of bulk. However, understanding polarization in nano systems also requires a proper treatment of charge transfer between surface dangling bonds. Here, we develop a real-space approach for total polarization and apply it to wurtzite semiconductors and BaTiO3 perovskite. First-principles calculations utilizing this approach not only yield spontaneous bulk polarization in agreement with Berry phase calculations, but also uncover phenomena specific to nano systems. As an example, we show surface passivation leads to a complete quenching of the piezoelectric effect, which reemerges only at larger length scale and/or spontaneous polarization.
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferro
We present a new approach to femtosecond direct laser writing lithography to pattern nanocavities in ferromagnetic thin films. To demonstrate the concept we irradiated 300~nm thin nickel films by single intense femtosecond laser pulses through the gl
Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferr
Local-probe imaging of the ferroelectric domain structure and auxiliary bulk pyroelectric measurements were conducted at low temperatures with the aim to clarify the essential aspects of the orbitally driven phase transition in GaMo4S8, a lacunar spi
Valleytronics is rapidly emerging as an exciting area of basic and applied research. In two dimensional systems, valley polarisation can dramatically modify physical properties through electron-electron interactions as demonstrated by such phenomena