ترغب بنشر مسار تعليمي؟ اضغط هنا

Vector Centrality in Networks with Higher-Order Interactions

75   0   0.0 ( 0 )
 نشر من قبل Karin Alfaro-Bittner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying the most influential nodes in networked systems is vital to optimize their function and control. Several scalar metrics have been proposed to that effect, but the recent shift in focus towards higher-order networks has rendered them void of performance guarantees. We propose a new measure of nodes centrality, which is no longer a scalar value, but a vector with dimension one lower than the highest order of interaction in the graph. Such a vectorial measure is linked to the eigenvector centrality for networks containing only pairwise interactions, whereas it has a significant added value in all other situations where interactions occur at higher-orders. In particular, it is able to unveil different roles which may be played by a same node at different orders of interactions, an information which is impossible to be retrieved by single scalar measures.



قيم البحث

اقرأ أيضاً

Complex networks represent the natural backbone to study epidemic processes in populations of interacting individuals. Such a modeling framework, however, is naturally limited to pairwise interactions, making it less suitable to properly describe soc ial contagion, where individuals acquire new norms or ideas after simultaneous exposure to multiple sources of infections. Simplicial contagion has been proposed as an alternative framework where simplices are used to encode group interactions of any order. The presence of higher-order interactions leads to explosive epidemic transitions and bistability which cannot be obtained when only dyadic ties are considered. In particular, critical mass effects can emerge even for infectivity values below the standard pairwise epidemic threshold, where the size of the initial seed of infectious nodes determines whether the system would eventually fall in the endemic or the healthy state. Here we extend simplicial contagion to time-varying networks, where pairwise and higher-order simplices can be created or destroyed over time. By following a microscopic Markov chain approach, we find that the same seed of infectious nodes might or might not lead to an endemic stationary state, depending on the temporal properties of the underlying network structure, and show that persistent temporal interactions anticipate the onset of the endemic state in finite-size systems. We characterize this behavior on higher-order networks with a prescribed temporal correlation between consecutive interactions and on heterogeneous simplicial complexes, showing that temporality again limits the effect of higher-order spreading, but in a less pronounced way than for homogeneous structures. Our work suggests the importance of incorporating temporality, a realistic feature of many real-world systems, into the investigation of dynamical processes beyond pairwise interactions.
Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on thei r topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.
Complex networks or graphs provide a powerful framework to understand importance of individuals and their interactions in real-world complex systems. Several graph theoretical measures have been introduced to access importance of the individual in sy stems represented by networks. Particularly, eigenvector centrality (EC) measure has been very popular due to its ability in measuring importance of the nodes based on not only number of interactions they acquire but also particular structural positions they have in the networks. Furthermore, the presence of certain structural features, such as the existence of high degree nodes in a network is recognized to induce localization transition of the principal eigenvector (PEV) of the networks adjacency matrix. Localization of PEV has been shown to cause difficulties in assigning centrality weights to the nodes based on the EC. We revisit PEV localization and its relation with failure of EC problem, and by using simple model networks demonstrate that in addition to the localization of the PEV, the delocalization of PEV may also create difficulties for using EC as a measure to rank the nodes. Our investigation while providing fundamental insight to the relation between PEV localization and centrality of nodes in networks, suggests that for the networks having delocalized PEVs, it is better to use degree centrality measure to rank the nodes.
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the networks degree distribution. We rigorously prove that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks.
Complex systems made of interacting elements are commonly abstracted as networks, in which nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated by the edges. Markov processes have been the prevailing p aradigm to model such a network-based dynamics, for instance in the form of random walks or other types of diffusions. Despite the success of this modelling perspective for numerous applications, it represents an over-simplification of several real-world systems. Importantly, simple Markov models lack memory in their dynamics, an assumption often not realistic in practice. Here, we explore possibilities to enrich the system description by means of second-order Markov models, exploiting empirical pathway information. We focus on the problem of community detection and show that standard network algorithms can be generalized in order to extract novel temporal information about the system under investigation. We also apply our methodology to temporal networks, where we can uncover communities shaped by the temporal correlations in the system. Finally, we discuss relations of the framework of second order Markov processes and the recently proposed formalism of using non-backtracking matrices for community detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا