ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral centrality measures in complex networks

179   0   0.0 ( 0 )
 نشر من قبل Santo Fortunato Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.



قيم البحث

اقرأ أيضاً

We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the networks degree distribution. We rigorously prove that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks.
The largest eigenvalue of a networks adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expre ssion relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: The hub with its immediate neighbors and the densely connected set of nodes with maximum $K$-core index. We validate this formula showing that it predicts with good accuracy the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a byproduct, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
Routing information through networks is a universal phenomenon in both natural and manmade complex systems. When each node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed comp utation. However, in many real networks nodes communicate efficiently even without such global intelligence. Here we show that the peculiar structural characteristics of many complex networks support efficient communication without global knowledge. We also describe a general mechanism that explains this connection between network structure and function. This mechanism relies on the presence of a metric space hidden behind an observable network. Our findings suggest that real networks in nature have underlying metric spaces that remain undiscovered. Their discovery would have practical applications ranging from routing in the Internet and searching social networks, to studying information flows in neural, gene regulatory networks, or signaling pathways.
Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural-controllability theory, we continue to lack a framework to control undirected complex networks, especially given link wei ghts. Here we introduce an exact-controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact-controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems.
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturi ng the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا