ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum squeezing and sensing with pseudo anti-parity-time symmetry

101   0   0.0 ( 0 )
 نشر من قبل Chuanwei Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of parity-time ($mathcal{PT}$) symmetry has greatly enriched our study of symmetry-enabled non-Hermitian physics, but the realization of quantum $mathcal{PT}$-symmetry faces an intrinsic issue of unavoidable symmetry-breaking Langevin noises. Here we construct a quantum pseudo-anti-$% mathcal{PT}$ (pseudo-$mathcal{APT}$) symmetry in a two-mode bosonic system without involving Langevin noises. We show that the pseudo-$mathcal{APT}$ phase transition across the exceptional point yields a transition between different types of quantum squeezing behaviors, textit{i.e.}, the squeezing factor increases exponentially (oscillates periodically) with time in the pseudo-$mathcal{APT}$ symmetric (broken) region. Such dramatic changes of squeezing factors and associated quantum states near the exceptional point are utilized for ultra-precision quantum sensing with divergent sensitivity. These exotic quantum phenomena and sensing applications induced by quantum pseudo-$mathcal{APT}$ symmetry can be experimentally observed in two physical systems: spontaneous wave mixing nonlinear optics and atomic Bose-Einstein condensates.



قيم البحث

اقرأ أيضاً

Parity-time (PT)-symmetric Hamiltonians have widespread significance in non-Hermitian physics. A PT-symmetric Hamiltonian can exhibit distinct phases with either real or complex eigenspectrum, while the transition points in between, the so-called exc eptional points, give rise to a host of critical behaviors that holds great promise for applications. For spatially periodic non-Hermitian systems, PT symmetries are commonly characterized and observed in line with the Bloch band theory, with exceptional points dwelling in the Brillouin zone. Here, in nonunitary quantum walks of single photons, we uncover a novel family of exceptional points beyond this common wisdom. These non-Bloch exceptional points originate from the accumulation of bulk eigenstates near boundaries, known as the non-Hermitian skin effect, and inhabit a generalized Brillouin zone. Our finding opens the avenue toward a generalized PT-symmetry framework, and reveals the intriguing interplay between PT symmetry and non-Hermitian skin effect.
78 - Jiaming Li , Tishuo Wang , Le Luo 2020
The decay of any unstable quantum state can be inhibited or enhanced by carefully tailored measurements, known as the quantum Zeno effect (QZE) or anti-Zeno effect (QAZE). To date, studies of QZE (QAZE) transitions have since expanded to various syst em-environment coupling, in which the time evolution can be suppressed (enhanced) not only by projective measurement but also through dissipation processes. However, a general criterion, which could extend to arbitrary dissipation strength and periodicity, is still lacking. In this letter, we show a general framework to unify QZE-QAZE effects and parity-time (PT) symmetry breaking transitions, in which the dissipative Hamiltonian associated to the measurement effect is mapped onto a PT-symmetric non- Hermitian Hamiltonian, thus applying the PT symmetry transitions to distinguish QZE (QAZE) and their crossover behavior. As a concrete example, we show that, in a two-level system periodically coupled to a dissipative environment, QZE starts at an exceptional point (EP), which separates the PT-symmetric (PTS) phase and PT-symmetry broken (PTB) phase, and ends at the resonance point (RP) of the maximum PT-symmetry breaking; while QAZE extends the rest of PTB phase and remains the whole PTS phase. Such findings reveal a hidden relation between QZE-QAZE and PTS-PTB phases in non-Hermitian quantum dynamics.
Non-Hermitian systems with parity-time reversal ($mathcal{PT}$) or anti-$mathcal{PT}$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena. One of the most extraordinary features is the presence of an exception point (EP), across which a phase transition with spontaneously broken $mathcal{PT}$ symmetry takes place. We implement a Floquet Hamiltonian of a single qubit with anti-$mathcal{PT}$ symmetry by periodically driving a dissipative quantum system of a single trapped ion. With stroboscopic emission and quantum state tomography, we obtain the time evolution of density matrix for an arbitrary initial state, and directly demonstrate information retrieval, eigenstates coalescence, and topological energy spectra as unique features of non-Hermitian systems.
Parity-time (PT) symmetry in non-Hermitian optical systems promises distinct optical effects and applications not found in conservative optics. Its counterpart, anti-PT symmetry, subscribes another class of intriguing optical phenomena and implies co mplementary techniques for exotic light manipulation. Despite exciting progress, so far anti-PT symmetry has only been realized in bulky systems or with optical gain. Here, we report an on-chip realization of non-Hermitian optics with anti-PT symmetry, by using a fully-passive, nanophotonic platform consisting of three evanescently coupled waveguides. By depositing a metal film on the center waveguide to introduce strong loss, an anti-PT system is realized. Using microheaters to tune the waveguides refractive indices, striking behaviors are observed such as equal power splitting, synchronized amplitude modulation, phase-controlled dissipation, and transition from anti-PT symmetry to its broken phase. Our results highlight exotic anti-Hermitian nanophotonics to be consolidated with conventional circuits on the same chip, whereby valuable chip devices can be created for quantum optics studies and scalable information processing.
We develop a theory of charge-parity-time (CPT) frameness resources to circumvent CPT-superselection. We construct and quantify such resources for spin~0, $frac{1}{2}$, 1, and Majorana particles and show that quantum information processing is possibl e even with CPT superselection. Our method employs a unitary representation of CPT inversion by considering the aggregate action of CPT rather than the composition of separate C, P and T operations, as some of these operations involve problematic anti-unitary representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا