ﻻ يوجد ملخص باللغة العربية
We develop a theory of charge-parity-time (CPT) frameness resources to circumvent CPT-superselection. We construct and quantify such resources for spin~0, $frac{1}{2}$, 1, and Majorana particles and show that quantum information processing is possible even with CPT superselection. Our method employs a unitary representation of CPT inversion by considering the aggregate action of CPT rather than the composition of separate C, P and T operations, as some of these operations involve problematic anti-unitary representations.
We show that appropriate superpositions of motional states are a reference frame resource that enables breaking of time -reversal superselection so that two parties lacking knowledge about the others direction of time can still communicate. We identi
Quantum walks (QW) are of crucial importance in the development of quantum information processing algorithms. Recently, several quantum algorithms have been proposed to implement network analysis, in particular to rank the centrality of nodes in netw
The emergence of parity-time ($mathcal{PT}$) symmetry has greatly enriched our study of symmetry-enabled non-Hermitian physics, but the realization of quantum $mathcal{PT}$-symmetry faces an intrinsic issue of unavoidable symmetry-breaking Langevin n
In function inversion, we are given a function $f: [N] mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data
The decay of any unstable quantum state can be inhibited or enhanced by carefully tailored measurements, known as the quantum Zeno effect (QZE) or anti-Zeno effect (QAZE). To date, studies of QZE (QAZE) transitions have since expanded to various syst