ﻻ يوجد ملخص باللغة العربية
We consider the multidimensional space-fractional diffusion equations with spatially varying diffusivity and fractional order. Significant computational challenges are encountered when solving these equations due both to the kernel singularity in the fractional integral operator and to the resulting dense discretized operators, which quickly become prohibitively expensive to handle because of their memory and arithmetic complexities. In this work, we present a singularity-aware discretization scheme that regularizes the singular integrals through a singularity subtraction technique adapted to the spatial variability of diffusivity and fractional order. This regularization strategy is conveniently formulated as a sparse matrix correction that is added to the dense operator, and is applicable to different formulations of fractional diffusion equations. We also present a block low rank representation to handle the dense matrix representations, by exploiting the ability to approximate blocks of the resulting formally dense matrix by low rank factorizations. A Cholesky factorization solver operates directly on this representation using the low rank blocks as its atomic computational tiles, and achieves high performance on multicore hardware. Numerical results show that the singularity treatment is robust, substantially reduces discretization errors, and attains the first-order convergence rate allowed by the regularity of the solutions. They also show that considerable savings are obtained in storage ($O(N^{1.5})$) and computational cost ($O(N^2)$) compared to dense factorizations. This translates to orders-of-magnitude savings in memory and time on multi-dimensional problems, and shows that the proposed methods offer practical tools for tackling large nonlocal fractional diffusion simulations.
Time fractional PDEs have been used in many applications for modeling and simulations. Many of these applications are multiscale and contain high contrast variations in the media properties. It requires very small time step size to perform detailed c
In this paper, we develop a robust fast method for mobile-immobile variable-order (VO) time-fractional diffusion equations (tFDEs), superiorly handling the cases of small or vanishing lower bound of the VO function. The valid fast approximation of th
We investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We examine the well-posedness issue and prove that the space-dependent variable order coefficient is uniquely determined among other coefficients o
In this paper, a second-order backward difference formula (abbr. BDF2) is used to approximate first-order time partial derivative, the Riesz fractional derivatives are approximated by fourth-order compact operators, a class of new alternating-directi
We consider a discretization of Caputo derivatives resulted from deconvolving a scheme for the corresponding Volterra integral. Properties of this discretization, including signs of the coefficients, comparison principles, and stability of the corres