ﻻ يوجد ملخص باللغة العربية
Time fractional PDEs have been used in many applications for modeling and simulations. Many of these applications are multiscale and contain high contrast variations in the media properties. It requires very small time step size to perform detailed computations. On the other hand, in the presence of small spatial grids, very small time step size is required for explicit methods. Explicit methods have many advantages as we discuss in the paper. In this paper, we propose a partial explicit method for time fractional PDEs. The approach solves the forward problem on a coarse computational grid, which is much larger than spatial heterogeneities, and requires only a few degrees of freedom to be treated implicitly. Via the construction of appropriate spaces and careful stability analysis, we can show that the time step can be chosen not to depend on the contrast or scale as the coarse mesh size. Thus, one can use larger time step size in an explicit approach. We present stability theory for our proposed method and our numerical results confirm the stability findings and demonstrate the performance of the approach.
In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussion noise with Hurst index $Hin(frac{1}{2},1)$. A sharp regularity estimate of the mild solution and the numerical scheme cons
Many multiscale problems have a high contrast, which is expressed as a very large ratio between the media properties. The contrast is known to introduce many challenges in the design of multiscale methods and domain decomposition approaches. These is
In this work, we design and investigate contrast-independent partially explicit time discretizations for wave equations in heterogeneous high-contrast media. We consider multiscale problems, where the spatial heterogeneities are at subgrid level and
This work continues a line of works on developing partially explicit methods for multiscale problems. In our previous works, we have considered linear multiscale problems, where the spatial heterogeneities are at subgrid level and are not resolved. I
In the current work we build a difference analog of the Caputo fractional derivative with generalized memory kernel ($_lambda$L2-1$_sigma$ formula). The fundamental features of this difference operator are studied and on its ground some difference sc