ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanism of separation hysteresis in curved compression ramp

89   0   0.0 ( 0 )
 نشر من قبل Wenfeng Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new spatial-related mechanism is proposed to understand separation hysteresis processes in curved compression ramp (CCR) flows discovered recently (Hu et al. Phy. Fluid, 32(11): 113601, 2020). Two separation hystereses, induced by variations of Mach number and wall temperature, are investigated numerically. The two hystereses indicate that there must exist parameter intervals of Mach number and wall temperature, wherein both attachment and separation states can be established stably. The relationships between the aerodynamic characteristics (including wall friction, pressure and heat flux) and the shock wave configurations in this two hystereses are analyzed. Further, the adverse pressure gradient (APG) Isb(x) induced by the upstream separation process and APG Icw(x) induced by the downstream isentropic compression process are estimated by classic theories. The trend of boundary layer APG resistence Ib(x) is evaluated from the spatial distributions of the physical quantities such as the shape factor and the height of the sound velocity line. With the stable conditions of separation and attachment, a self-consistent mechanism is obtained when Isb, Icw and Ib have appropriate spatial distributions.



قيم البحث

اقرأ أيضاً

The bistable states and separation hysteresis in curved compression ramp (CCR) flows, and the corresponding aerothermal characteristics (including wall friction, pressure and heat flux), are studied numerically and theoretically. Direct numerical sim ulations of separation hysteresis induced by variation of turning angle, as well as the influence of inflow Mach number and wall temperature on hysteresis loops, are carried out. Distributions of wall friction, pressure and heat flux are analyzed. Further, emergence of wall frictions first and second minima in the separation bubble is interpreted, revealing it is dominated by the adverse pressure gradient induced by separation and reattachment shocks. The present results and analysis indicate that the reversed-flow singularity of Smith (Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1988, 420: 21-52) is less likely to occur in CCR flows. The prediction of peak pressure of separation states confirms the model based on the minimum viscous dissipation theorem (Physics of Fluids, 2020, 32(10):101702). While the pressure overshoot can be analyzed by shock-polars with pressure match of compression and expansion process. The correlation between peak heat flux and peak pressure rise of both separation and attachment states is also discussed in terms of the classical power relations.
Here, we provide a theoretical framework revealing that a steady compression ramp flow must have the minimal dissipation of kinetic energy, and can be demonstrated using the least action principle. For a given inflow Mach number $M_{0}$ and ramp angl e $alpha$, the separation angle $theta_{s}$ manifesting flow system states can be determined based on this theory. Thus, both the shapes of shock wave configurations and pressure peak $p_{peak}$ behind reattachment shock waves are predictable. These theoretical predictions agree excellently with both experimental data and numerical simulations, covering a wide range of $M_{0}$ and $alpha$. In addition, for a large separation, the theory indicates that $theta_{s}$ only depends on $M_{0}$ and $alpha$, but is independent of the Reynolds number $Re$ and wall temperature $T_{w}$. These facts suggest that the proposed theoretical framework can be applied to other flow systems dominated by shock waves, which are ubiquitous in aerospace engineering.
We report the mechanism of the hysteresis in the transition between Regular and Mach reflections. A new discovery is that, the hysteresis loop is in fact the projection of a higher dimensional path, i.e. the valley lines in the surface of dissipation , of which minimal values correspond to stable reflection configurations. Since the saddle-nodes bifurcate the valleies of the surface, they are actually the transition points of the two reflections. Furthermore, the predicted reflection configurations agree well with the experimental and numerical results, which is a validation of this theory.
The flapping flag instability occurs when a flexible cantilevered plate is immersed in a uniform airflow. To this day, the nonlinear aspects of this aeroelastic instability are largely unknown. In particular, experiments in the literature all report a large hysteresis loop, while the bifurcation in numerical simulations is either supercritical or subcritical with a small hysteresis loop. In this paper, this discrepancy is addressed. First weakly nonlinear stability analyses are conducted in the slender-body and two-dimensional limits, and second new experiments are performed with flat and curved plates. The discrepancy is attributed to inevitable planeity defects of the plates in the experiments.
The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impingin g on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves which have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ~40% reduction in contact time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا