ﻻ يوجد ملخص باللغة العربية
The flapping flag instability occurs when a flexible cantilevered plate is immersed in a uniform airflow. To this day, the nonlinear aspects of this aeroelastic instability are largely unknown. In particular, experiments in the literature all report a large hysteresis loop, while the bifurcation in numerical simulations is either supercritical or subcritical with a small hysteresis loop. In this paper, this discrepancy is addressed. First weakly nonlinear stability analyses are conducted in the slender-body and two-dimensional limits, and second new experiments are performed with flat and curved plates. The discrepancy is attributed to inevitable planeity defects of the plates in the experiments.
We report the mechanism of the hysteresis in the transition between Regular and Mach reflections. A new discovery is that, the hysteresis loop is in fact the projection of a higher dimensional path, i.e. the valley lines in the surface of dissipation
A new spatial-related mechanism is proposed to understand separation hysteresis processes in curved compression ramp (CCR) flows discovered recently (Hu et al. Phy. Fluid, 32(11): 113601, 2020). Two separation hystereses, induced by variations of Mac
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless paramet
A modal stability analysis shows that plane Poiseuille flow of an Oldroyd-B fluid becomes unstable to a `center mode with phase speed close to the maximum base-flow velocity, $U_{max}$. The governing dimensionless groups are the Reynolds number $Re =