ﻻ يوجد ملخص باللغة العربية
Accurate and efficient simulation on quantum dissipation with nonlinear environment couplings remains nowadays a challenging task. In this work, we propose to incorporate the stochastic fields, which resolve just the nonlinear environment coupling terms, into the dissipaton-equation-of-motion (DEOM) construction. The stochastic fields are introduced via the Hubbard-Stratonovich transformation. After the transformation, the resulted stochastic-fields-dressed total Hamiltonian contains only linear environment coupling terms. On basis of that, a stochastic-fields-dressed DEOM (SFD-DEOM) can then be constructed. The resultant SFD-DEOM, together with the ensemble average over the stochastic fields, constitutes an exact and nonperturbative approach to quantum dissipation under nonlinear environment couplings. It is also of relatively high efficiency and stability due to the fact that only nonlinear environment coupling terms are dealt with stochastic fields while linear couplings are still treated as the usual DEOM. Numerical demonstrations are carried out on a two-state model system.
We derive a hierarchy of matrix product states (HOMPS) method which is numerically exact and efficient for general non-Markovian dynamics in open quantum system. This HOMPS is trying to attack the exponential wall issue in the recently developed hier
We study the open system dynamics of a heavy quark in the quark-gluon plasma using a Lindblad master equation. Applying the quantum state diffusion approach by Gisin and Percival, we derive and numerically solve a nonlinear stochastic Schrodinger equ
Dissipaton-equation-of-motion (DEOM) theory [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)] is an exact and nonperturbative many-particle method for open quantum systems. The existing dissipaton algebra treats also the dynamics of hybrid bath solvatio
We show that the stochastic Schrodinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to
We show that a nonlinear Schrodinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonl