ﻻ يوجد ملخص باللغة العربية
Dissipaton-equation-of-motion (DEOM) theory [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)] is an exact and nonperturbative many-particle method for open quantum systems. The existing dissipaton algebra treats also the dynamics of hybrid bath solvation coordinates. The dynamics of conjugate momentums remain to be addressed within the DEOM framework. In this work, we establish this missing ingredient, the dissipaton algebra on solvation momentums, with rigorous validations against necessary and sufficient criteria. The resulted phase-space DEOM theory will serve as a solid ground for further developments of various practical methods toward a broad range of applications. We illustrate this novel dissipaton algebra with the phase-space DEOM-evaluation on heat current fluctuation.
Forty-five years after the point de depart [1] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the energy functional in terms of the electron densi
We analyze the role of coherent, non-perturbative system-bath interactions in a photosynthetic heat engine. Using the reaction-coordinate formalism to describe the vibrational phonon-environment in the engine, we analyze the efficiency around an opti
The possibility of suddenly ionized molecules undergoing extremely fast electron hole dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron
In a previous article [J. Chem. Phys. 138, 084108 (2013)], we showed that the $tto 0_+$ limit of ring-polymer molecular dynamics (RPMD) rate-theory is also the $tto 0_+$ limit of a new type of quantum flux-side time-correlation function, in which the
A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition sta