ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Aggregation Artery Architecture of constrained Origin-Destination flows using Manhattan L-function

90   0   0.0 ( 0 )
 نشر من قبل Zidong Fang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The movement of humans and goods in cities can be represented by constrained flow, which is defined as the movement of objects between origin and destination in road networks. Flow aggregation, namely origins and destinations aggregated simultaneously, is one of the most common patterns, say the aggregated origin-to-destination flows between two transport hubs may indicate the great traffic demand between two sites. Developing a clustering method for constrained flows is crucial for determining urban flow aggregation. Among existing methods about identifying flow aggregation, L-function of flows is the major one. Nevertheless, this method depends on the aggregation scale, the key parameter detected by Euclidean L-function, it does not adapt to road network. The extracted aggregation may be overestimated and dispersed. Therefore, we propose a clustering method based on L-function of Manhattan space, which consists of three major steps. The first is to detect aggregation scales by Manhattan L-function. The second is to determine core flows possessing highest local L-function values at different scales. The final step is to take the intersection of core flows neighbourhoods, the extent of which depends on corresponding scale. By setting the number of core flows, we could concentrate the aggregation and thus highlight Aggregation Artery Architecture (AAA), which depicts road sections that contain the projection of key flow cluster on the road networks. Experiment using taxi flows showed that AAA could clarify resident movement type of identified aggregated flows. Our method also helps selecting locations for distribution sites, thereby supporting accurate analysis of urban interactions.



قيم البحث

اقرأ أيضاً

Origin-Destination (OD) flow, as an abstract representation of the object`s movement or interaction, has been used to reveal the urban mobility and human-land interaction pattern. As an important spatial analysis approach, the clustering methods of p oint events have been extended to OD flows to identify the dominant trends and spatial structures of urban mobility. However, the existing methods for OD flow cluster-detecting are limited both in specific spatial scale and the uncertain result due to different parameters setting, which is difficult for complicated OD flows clustering under spatial heterogeneity. To address these limitations, in this paper, we proposed a novel OD flows cluster-detecting method based on the OPTICS algorithm which can identify OD flow clusters with various aggregation scales. The method can adaptively determine parameter value from the dataset without prior knowledge and artificial intervention. Experiments indicated that our method outperformed three state-of-the-art methods with more accurate and complete of clusters and less noise. As a case study, our method is applied to identify the potential routes for public transport service settings by detecting OD flow clusters within urban travel data.
Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and D estination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction.
With the increasing adoption of Automatic Vehicle Location (AVL) and Automatic Passenger Count (APC) technologies by transit agencies, a massive amount of time-stamped and location-based passenger boarding and alighting count data can be collected on a continuous basis. The availability of such large-scale transit data offers new opportunities to produce estimates for Origin-Destination (O-D) flows, helping inform transportation planning and transit management. However, the state-of-the-art methodologies for AVL/APC data analysis mostly tackle the O-D flow estimation problem within routes and barely infer the transfer activities across the entire transit network. This paper proposes three optimization models to identify transfers and approximate network-level O-D flows by minimizing the deviations between estimated and observed proportions or counts of transferring passengers: A Quadratic Integer Program (QIP), a feasible rounding procedure for the Quadratic Convex Programming (QCP) relaxation of the QIP, and an Integer Program (IP). The inputs of the models are readily available by applying the various route-level flow estimation algorithms to the automatically collected AVL/APC data and the output of the models is a network O-D estimation at varying geographical resolutions. The optimization models were evaluated on a case study for Ann Arbor-Ypsilanti area in Michigan. The IP model outperforms the QCP approach in terms of accuracy and remains tractable from an efficiency standpoint, contrary to the QIP. Its estimated O-D matrix achieves an R-Squared metric of 95.57% at the Traffic Analysis Zone level and 92.39% at the stop level, compared to the ground-truth estimates inferred from the state-of-practice trip-chaining methods.
Given a set of $n$ terminals, which are points in $d$-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path con sisting of axis-parallel segments whose total length equals the pairs Manhattan distance. Even for $d=2$, the problem is NP-hard, but constant-factor approximations are known. For $d ge 3$, the problem is APX-hard; it is known to admit, for any $eps > 0$, an $O(n^eps)$-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set $R$ of $n$ terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in $R$ is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an $O(log^{d+1} n)$-approximation algorithm for GMMN (and, hence, MMN) in $d ge 2$ dimensions and an $O(log n)$-approximation algorithm for 2D. We show that an existing $O(log n)$-approximation algorithm for RSA in 2D generalizes easily to $d>2$ dimensions.
Emerging micromobility services (e.g., e-scooters) have a great potential to enhance urban mobility but more knowledge on their usage patterns is needed. The General Bikeshare Feed Specification (GBFS) data are a possible source for examining micromo bility trip patterns, but efforts are needed to infer trips from the GBFS data. Existing trip inference methods are usually based upon the assumption that the vehicle ID of a micromobility option (e-scooter or e-bike) does not change, and so they cannot deal with data with vehicle IDs that change over time. In this study, we propose a comprehensive package of algorithms to infer trip origins and destinations from GBFS data with different types of vehicle ID. We implement the algorithms in Washington DC by analyzing one-week (last week of February 2020) of GBFS data published by six vendors, and we evaluate the inference accuracy of the proposed algorithms by R-squared, mean absolute error, and sum absolute error. We find that the R-squared measure is larger than 0.9 and the MAE measure is smaller than 2 when the algorithms are evaluated with a 400m*400m grid, and the absolute errors are relatively larger in the downtown area. The accuracy of the trip-inference algorithms is sufficiently high for most practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا