ﻻ يوجد ملخص باللغة العربية
Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction.
Accurate prediction of short-term OD Matrix (i.e. the distribution of passenger flows from various origins to destinations) is a crucial task in metro systems. It is highly challenging due to the constantly changing nature of many impacting factors a
Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in or
Sepsis is a life-threatening condition that seriously endangers millions of people over the world. Hopefully, with the widespread availability of electronic health records (EHR), predictive models that can effectively deal with clinical sequential da
The movement of humans and goods in cities can be represented by constrained flow, which is defined as the movement of objects between origin and destination in road networks. Flow aggregation, namely origins and destinations aggregated simultaneousl
Crowdsourcing is a popular paradigm for soliciting forecasts on future events. As people may have different forecasts, how to aggregate solicited forecasts into a single accurate prediction remains to be an important challenge, especially when no his