ﻻ يوجد ملخص باللغة العربية
We introduce the notion of additive units, or `addits, of a pointed Arveson system, and demonstrate their usefulness through several applications. By a pointed Arveson system we mean a spatial Arveson system with a fixed normalised reference unit. We show that the addits form a Hilbert space whose codimension-one subspace of `roots is isomorphic to the index space of the Arveson system, and that the addits generate the type I part of the Arveson system. Consequently the isomorphism class of the Hilbert space of addits is independent of the reference unit. The addits of a pointed inclusion system are shown to be in natural correspondence with the addits of the generated pointed product system. The theory of amalgamated products is developed using addits and roots, and an explicit formula for the amalgamation of pointed Arveson systems is given, providing a new proof of its independence of the particular reference units. (This independence justifies the terminology `spatial product of spatial Arveson systems). Finally a cluster construction for inclusion subsystems of an Arveson system is introduced and we demonstrate its correspondence with the action of the Cantor--Bendixson derivative in the context of the random closed set approach to product systems due to Tsirelson and Liebscher.
Suppose that $X_{1}$ and $X_{2}$ are two selfadjoint random variables that are freely independent over an operator algebra $mathcal{B}$. We describe the possible operator atoms of the distribution of $X_{1}+X_{2}$ and, using linearization, we determi
We introduce the notion of additive units and roots of a unit in a spatial product system. The set of all roots of any unit forms a Hilbert space and its dimension is the same as the index of the product system. We show that a unit and all of its roo
We consider C*-algebras of finite higher-rank graphs along with their rotational action. We show how the entropy theory of product systems with finite frames applies to identify the phase transitions of the dynamics. We compute the positive inverse t
We study the structure of C*-algebras associated with compactly aligned product systems over group embeddable right LCM-semigroups. Towards this end we employ controlled maps and a controlled elimination method that associates the original cores to t
Let $mathcal{M}$ be a von Neumann algebra with a normal semifinite faithful trace $tau$. We prove that every continuous $m$-homogeneous polynomial $P$ from $L^p(mathcal{M},tau)$, with $0<p<infty$, into each topological linear space $X$ with the prope