ﻻ يوجد ملخص باللغة العربية
We characterize low-loss electron-beam evaporated niobium thin films deposited under ultra-high vacuum conditions. Slow deposition yields films with a high superconducting transition temperature ($9.20 pm 0.06 rm ~K$) as well as a residual resistivity ratio of $4.8$. We fabricate the films into coplanar waveguide resonators to extract the intrinsic loss due to the presence of two-level-system fluctuators using microwave measurements. For a coplanar waveguide resonator gap of $2~mu rm m$, the films exhibit filling-factor-adjusted two-level-system loss tangents as low as $1.5 times 10^{-7}$ with single-photon regime internal quality factors in excess of one million after removing native surface oxides of the niobium.
Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into RF coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures
We report on the design, fabrication and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the mag
We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses associated with two-level systems: an additional substrate surface t
Losses in superconducting planar resonators are presently assumed to predominantly arise from surface-oxide dissipation, due to experimental losses varying with choice of materials. We model and simulate the magnitude of the loss from interface surfa
We have designed and fabricated superconducting coplanar waveguide resonators with fundamental frequencies from 2 to $9 rm{GHz}$ and loaded quality factors ranging from a few hundreds to a several hundred thousands reached at temperatures of $20 rm{m