ﻻ يوجد ملخص باللغة العربية
Machine learning has endless applications in the health care industry. White blood cell classification is one of the interesting and promising area of research. The classification of the white blood cells plays an important part in the medical diagnosis. In practise white blood cell classification is performed by the haematologist by taking a small smear of blood and careful examination under the microscope. The current procedures to identify the white blood cell subtype is more time taking and error-prone. The computer aided detection and diagnosis of the white blood cells tend to avoid the human error and reduce the time taken to classify the white blood cells. In the recent years several deep learning approaches have been developed in the context of classification of the white blood cells that are able to identify but are unable to localize the positions of white blood cells in the blood cell image. Following this, the present research proposes to utilize YOLOv3 object detection technique to localize and classify the white blood cells with bounding boxes. With exhaustive experimental analysis, the proposed work is found to detect the white blood cell with 99.2% accuracy and classify with 90% accuracy.
Blood cell detection in microscopic images is an essential branch of medical image processing research. Since disease detection based on manual checking of blood cells is time-consuming and full of errors, testing of blood cells using object detector
Red blood cells are highly deformable and present in various shapes. In blood cell disorders, only a subset of all cells is morphologically altered and relevant for the diagnosis. However, manually labeling of all cells is laborious, complicated and
The objective of this chapter is to give an insight of the mathematical modellng of hematopoiesis using multi-agent systems. Several questions may arise then: what is hematopoiesis and why is it interesting to study this problem from a mathematical p
The manual evaluation, classification and counting of biological objects demands for an enormous expenditure of time and subjective human input may be a source of error. Investigating the shape of red blood cells (RBCs) in microcapillary Poiseuille f
In this paper, we generalize image (texture) statistical descriptors and propose algorithms that improve their efficacy. Recently, a new method showed how the popular Co-Occurrence Matrix (COM) can be modified into a fuzzy version (FCOM) which is mor