ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularized Sequential Latent Variable Models with Adversarial Neural Networks

82   0   0.0 ( 0 )
 نشر من قبل Jin Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recurrent neural networks (RNN) with richly distributed internal states and flexible non-linear transition functions, have overtaken the dynamic Bayesian networks such as the hidden Markov models (HMMs) in the task of modeling highly structured sequential data. These data, such as from speech and handwriting, often contain complex relationships between the underlaying variational factors and the observed data. The standard RNN model has very limited randomness or variability in its structure, coming from the output conditional probability model. This paper will present different ways of using high level latent random variables in RNN to model the variability in the sequential data, and the training method of such RNN model under the VAE (Variational Autoencoder) principle. We will explore possible ways of using adversarial method to train a variational RNN model. Contrary to competing approaches, our approach has theoretical optimum in the model training and provides better model training stability. Our approach also improves the posterior approximation in the variational inference network by a separated adversarial training step. Numerical results simulated from TIMIT speech data show that reconstruction loss and evidence lower bound converge to the same level and adversarial training loss converges to 0.



قيم البحث

اقرأ أيضاً

We propose an approach for improving sequence modeling based on autoregressive normalizing flows. Each autoregressive transform, acting across time, serves as a moving frame of reference, removing temporal correlations, and simplifying the modeling o f higher-level dynamics. This technique provides a simple, general-purpose method for improving sequence modeling, with connections to existing and classical techniques. We demonstrate the proposed approach both with standalone flow-based models and as a component within sequential latent variable models. Results are presented on three benchmark video datasets, where autoregressive flow-based dynamics improve log-likelihood performance over baseline models. Finally, we illustrate the decorrelation and improved generalization properties of using flow-based dynamics.
Robust multi-agent trajectory prediction is essential for the safe control of robots and vehicles that interact with humans. Many existing methods treat social and temporal information separately and therefore fall short of modelling the joint future trajectories of all agents in a socially consistent way. To address this, we propose a new class of Latent Variable Sequential Set Transformers which autoregressively model multi-agent trajectories. We refer to these architectures as AutoBots. AutoBots model the contents of sets (e.g. representing the properties of agents in a scene) over time and employ multi-head self-attention blocks over these sequences of sets to encode the sociotemporal relationships between the different actors of a scene. This produces either the trajectory of one ego-agent or a distribution over the future trajectories for all agents under consideration. Our approach works for general sequences of sets and we provide illustrative experiments modelling the sequential structure of the multiple strokes that make up symbols in the Omniglot data. For the single-agent prediction case, we validate our model on the NuScenes motion prediction task and achieve competitive results on the global leaderboard. In the multi-agent forecasting setting, we validate our model on TrajNet. We find that our method outperforms physical extrapolation and recurrent network baselines and generates scene-consistent trajectories.
Amortised inference enables scalable learning of sequential latent-variable models (LVMs) with the evidence lower bound (ELBO). In this setting, variational posteriors are often only partially conditioned. While the true posteriors depend, e.g., on t he entire sequence of observations, approximate posteriors are only informed by past observations. This mimics the Bayesian filter -- a mixture of smoothing posteriors. Yet, we show that the ELBO objective forces partially-conditioned amortised posteriors to approximate products of smoothing posteriors instead. Consequently, the learned generative model is compromised. We demonstrate these theoretical findings in three scenarios: traffic flow, handwritten digits, and aerial vehicle dynamics. Using fully-conditioned approximate posteriors, performance improves in terms of generative modelling and multi-step prediction.
Advances in neural recording present increasing opportunities to study neural activity in unprecedented detail. Latent variable models (LVMs) are promising tools for analyzing this rich activity across diverse neural systems and behaviors, as LVMs do not depend on known relationships between the activity and external experimental variables. However, progress in latent variable modeling is currently impeded by a lack of standardization, resulting in methods being developed and compared in an ad hoc manner. To coordinate these modeling efforts, we introduce a benchmark suite for latent variable modeling of neural population activity. We curate four datasets of neural spiking activity from cognitive, sensory, and motor areas to promote models that apply to the wide variety of activity seen across these areas. We identify unsupervised evaluation as a common framework for evaluating models across datasets, and apply several baselines that demonstrate benchmark diversity. We release this benchmark through EvalAI. http://neurallatents.github.io
Traditional deep neural nets (NNs) have shown the state-of-the-art performance in the task of classification in various applications. However, NNs have not considered any types of uncertainty associated with the class probabilities to minimize risk d ue to misclassification under uncertainty in real life. Unlike Bayesian neural nets indirectly infering uncertainty through weight uncertainties, evidential neural networks (ENNs) have been recently proposed to support explicit modeling of the uncertainty of class probabilities. It treats predictions of an NN as subjective opinions and learns the function by collecting the evidence leading to these opinions by a deterministic NN from data. However, an ENN is trained as a black box without explicitly considering different types of inherent data uncertainty, such as vacuity (uncertainty due to a lack of evidence) or dissonance (uncertainty due to conflicting evidence). This paper presents a new approach, called a {em regularized ENN}, that learns an ENN based on regularizations related to different characteristics of inherent data uncertainty. Via the experiments with both synthetic and real-world datasets, we demonstrate that the proposed regularized ENN can better learn of an ENN modeling different types of uncertainty in the class probabilities for classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا