ﻻ يوجد ملخص باللغة العربية
The inverse probability weighting approach is popular for evaluating treatment effects in observational studies, but extreme propensity scores could bias the estimator and induce excessive variance. Recently, the overlap weighting approach has been proposed to alleviate this problem, which smoothly down-weighs the subjects with extreme propensity scores. Although advantages of overlap weighting have been extensively demonstrated in literature with continuous and binary outcomes, research on its performance with time-to-event or survival outcomes is limited. In this article, we propose two weighting estimators that combine propensity score weighting and inverse probability of censoring weighting to estimate the counterfactual survival functions. These estimators are applicable to the general class of balancing weights, which includes inverse probability weighting, trimming, and overlap weighting as special cases. We conduct simulations to examine the empirical performance of these estimators with different weighting schemes in terms of bias, variance, and 95% confidence interval coverage, under various degree of covariate overlap between treatment groups and censoring rate. We demonstrate that overlap weighting consistently outperforms inverse probability weighting and associated trimming methods in bias, variance, and coverage for time-to-event outcomes, and the advantages increase as the degree of covariate overlap between the treatment groups decreases.
A straightforward application of semi-supervised machine learning to the problem of treatment effect estimation would be to consider data as unlabeled if treatment assignment and covariates are observed but outcomes are unobserved. According to this
The Consent-to-Contact (C2C) registry at the University of California, Irvine collects data from community participants to aid in the recruitment to clinical research studies. Self-selection into the C2C likely leads to bias due in part to enrollees
We study the problem of estimating a functional or a parameter in the context where outcome is subject to nonignorable missingness. We completely avoid modeling the regression relation, while allowing the propensity to be modeled by a semiparametric
Forest-based methods have recently gained in popularity for non-parametric treatment effect estimation. Building on this line of work, we introduce causal survival forests, which can be used to estimate heterogeneous treatment effects in a survival a
The Cox regression model and its associated hazard ratio (HR) are frequently used for summarizing the effect of treatments on time to event outcomes. However, the HRs interpretation strongly depends on the assumed underlying survival model. The chall