ﻻ يوجد ملخص باللغة العربية
We study the problem of estimating a functional or a parameter in the context where outcome is subject to nonignorable missingness. We completely avoid modeling the regression relation, while allowing the propensity to be modeled by a semiparametric logistic relation where the dependence on covariates is unspecified. We discover a surprising phenomenon in that the estimation of the parameter in the propensity model as well as the functional estimation can be carried out without assessing the missingness dependence on covariates. This allows us to propose a general class of estimators for both model parameter estimation and functional estimation, including estimating the outcome mean. The robustness of the estimators are nonstandard and are established rigorously through theoretical derivations, and are supported by simulations and a data application.
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova
We study the identification and estimation of statistical functionals of multivariate data missing non-monotonically and not-at-random, taking a semiparametric approach. Specifically, we assume that the missingness mechanism satisfies what has been p
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar (1987). The idea is to generate a random finite subset of a parameter space which will automatically
There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By vi
In this paper, we propose new semiparametric procedures for making inference on linear functionals and their functions of two semicontinuous populations. The distribution of each population is usually characterized by a mixture of a discrete point ma