ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband energy squeezing and tunneling based on unidirectional modes

140   0   0.0 ( 0 )
 نشر من قبل Jie Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy squeezing attracts many attentions for its potential applications in electromagnetic (EM) energy harvesting and optical communication. However, due to the Fabry-Perot resonance, only the EM waves with discrete frequencies can be squeezed and, as far as we know, in the previous energy-squeezing devices, stringent requirements of the materials or the geometrical shape are needed. We note that the structures filled with epsilon-near-zero (ENZ) mediums as reported in some works can squeeze and tunnel EM waves at frequencies (e.g. plasma frequency). However, the group velocity is usually near zero which means few EM information travel through the structures. In this paper, low-loss energy squeezing and tunneling (EST) based on unidirectional modes were demonstrated in YIG-based one-way waveguides at microwave frequencies. According to our theoretical analysis and the simulations using finite element method, broadband EST was achieved and the EM EST was observed even for extremely bended structures. Besides, similar EM EST was achieved in a realistic three-dimensional remanence-based one-way waveguide as well. The unidirectional modes-based EST paving the way to ultra-subwavelength EM focusing, enhanced nonlinear optics, and designing numerous functional devices in integrated optical circuits such as phase modulator.



قيم البحث

اقرأ أيضاً

Squeezed light are optical beams with variance below the Shot Noise Level. They are a key resource for quantum technologies based on photons, they can be used to achieve better precision measurements, improve security in quantum key distribution chan nels and as a fundamental resource for quantum computation. To date, the majority of experiments based on squeezed light have been based on non-linear crystals and discrete optical components, as the integration of quadrature squeezed states of light in a nanofabrication-friendly material is a challenging technological task. Here we measure 0.45 dB of GHz-broad quadrature squeezing produced by a ring resonator integrated on a Silicon Nitride photonic chip that we fabricated with CMOS compatible steps. The result corrected for the off-chip losses is estimated to be 1 dB below the Shot Noise Level. We identify and verify that the current results are limited by excess noise produced in the chip, and propose ways to reduce it. Calculations suggest that an improvement in the optical properties of the chip achievable with existing technology can develop scalable quantum technologies based on light.
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light.
This paper proposes a flexible broadband linear polarization converter based on metasurface operating at microwave band. In order to achieve bandwidth extension property, long and short metallic arc wires, as well as the metallic disks placed over a ground plane, are combined into the polarizer, which can generate three neighboring resonances. Due to the combination of the first two resonances and optimized size and thickness of the unit cell, the polarization converter can have a weak incident angle dependence. Both simulated and measured results confirm that the average polarization conversion ratio is over 85% from 11.3 to 20.2 GHz within a broad incident angle from 0{deg} to 45{deg}. Moreover, the proposed polarization converter based on flexible substrates can be applied for conformal design. The simulation and experiment results demonstrate that our designed polarizer still keeps high polarization conversion efficiency even when it adheres on convex cylindrical surfaces. The periodic metallic structure of the designed polarizer has great potential application values in the microwave, terahertz and optic regimes.
An optical equivalent of the field-programmable gate array (FPGA) is of great interest to large-scale photonic integrated circuits. Previous programmable photonic devices relying on the weak, volatile thermo-optic or electro-optic effect usually suff er from a large footprint and high energy consumption. Phase change materials (PCMs) offer a promising solution due to the large non-volatile change in the refractive index upon phase transition. However, the large optical loss in PCMs poses a serious problem. Here, by exploiting an asymmetric directional coupler design, we demonstrate PCM-clad silicon photonic 1 times 2 and 2 times 2 switches with a low insertion loss of ~1 dB and a compact coupling length of ~30 {mu}m while maintaining a small crosstalk less than ~10 dB over a bandwidth of 30 nm. The reported optical switches will function as the building blocks of the meshes in the optical FPGAs for applications such as optical interconnects, neuromorphic computing, quantum computing, and microwave photonics.
We describe a resonantly enhanced Mach-Zehnder modulator (MZM) that can be operated over a wide temperature range of 55C without being actively biased, while providing a significant resonant enhancement of 6.8 at the nominal wavelength / temperature compared to a linear MZM driven with a distributed driver. More importantly, it enables a ~20X improvement in power consumption compared to a 50 {Omega} matched linear traveling wave modulator with comparable phase shifter technology, drive voltage and output optical modulation amplitude. Passive biasing of the Mach-Zehnder interferometer is further implemented by replacing a splitter element in the MZM with a novel device combining splitting and fiber coupling functionalities in a single, multi-modal structure, that converts permanent fiber placement into a phase correction. Both concepts are combined in a single modulator device, removing the need for any type of active control in a wide temperature operation range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا