ﻻ يوجد ملخص باللغة العربية
Squeezed light are optical beams with variance below the Shot Noise Level. They are a key resource for quantum technologies based on photons, they can be used to achieve better precision measurements, improve security in quantum key distribution channels and as a fundamental resource for quantum computation. To date, the majority of experiments based on squeezed light have been based on non-linear crystals and discrete optical components, as the integration of quadrature squeezed states of light in a nanofabrication-friendly material is a challenging technological task. Here we measure 0.45 dB of GHz-broad quadrature squeezing produced by a ring resonator integrated on a Silicon Nitride photonic chip that we fabricated with CMOS compatible steps. The result corrected for the off-chip losses is estimated to be 1 dB below the Shot Noise Level. We identify and verify that the current results are limited by excess noise produced in the chip, and propose ways to reduce it. Calculations suggest that an improvement in the optical properties of the chip achievable with existing technology can develop scalable quantum technologies based on light.
We experimentally study a homodyne detection technique for the characterization of a quadrature squeezed field where the correlated bands, here created by four-wave mixing in a hot atomic vapor, are separated by a large frequency gap of more than 6 G
We report demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon
Quantum states of light can improve imaging whenever the image quality and resolution are limited by the quantum noise of the illumination. In the case of a bright illumination, quantum enhancement is obtained for a light field composed of many squee
Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the propertie
Energy squeezing attracts many attentions for its potential applications in electromagnetic (EM) energy harvesting and optical communication. However, due to the Fabry-Perot resonance, only the EM waves with discrete frequencies can be squeezed and,