ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust in RCW 58: clues to common envelope channel formation?

315   0   0.0 ( 0 )
 نشر من قبل Palmira Jim\\'enez-Hern\\'andez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a characterization of the dust in the Wolf-Rayet (WR) nebula RCW 58 around the WN8h star WR 40 using archival infrared (IR) observations from WISE and Herschel and radio observations from ATCA. We selected two clumps, free from contamination from material along the line of sight and located towards southern regions in RCW 58, as representative of the general properties of this WR nebula. Their optical, IR and radio properties are then modelled using the photoionization code Cloudy, which calculates a self-consistent spatial distribution of dust and gas properties. Two populations of dust grains are required to model the IR SED: a population of small grains with sizes 0.002-0.01 $mu$m, which is found throughout the clumps, and a population of large grains, with sizes up to 0.9 $mu$m, located further from the star. Moreover, the clumps have very high dust-to-gas ratios, which present a challenge for their origin. Our model supports the hypothesis that RCW 58 is distributed in a ring-like structure rather than a shell, and we estimate a mass of $sim$2.5 M$_odot$. This suggests that the mass of the progenitor of WR 40 was about $approx40^{+2}_{-3}$ M$_odot$. The ring morphology, low nebular mass, large dust grain size and high dust-to-gas ratio lead us to propose that RCW 58 has formed through a common envelope channel, similar to what has been proposed for M 1-67.



قيم البحث

اقرأ أيضاً

ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space. We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths. We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN. We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CH 3 CN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 x 10 15 cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation.
We study the formation of dust in the expanding gas ejected as a result of a common envelope binary interaction. In our novel approach, we apply the dust formation model of Nozawa et al. to the outputs of the 3D hydrodynamic SPH simulation performed by Iaconi et al., that involves a giant of 0.88~ms and 83~rs, with a companion of 0.6~ms placed on the surface of the giant in circular orbit. After simulating the dynamic in-spiral phase we follow the expansion of the ejecta for $simeq 18,000$~days. During this period the gas is able to cool down enough to reach dust formation temperatures. Our results show that dust forms efficiently in the window between $simeq 300$~days (the end of the dynamic in-spiral) and $simeq 5000$~days. The dust forms in two separate populations; an outer one in the material ejected during the first few orbits of the companion inside the primarys envelope and an inner one in the rest of the ejected material. We are able to fit the grain size distribution at the end of the simulation with a double power law. The slope of the power law for smaller grains is flatter than that for larger grains, creating a knee-shaped distribution. The power law indexes are however different from the classical values determined for the interstellar medium. We also estimate that the contribution to cosmic dust by common envelope events is not negligible and comparable to that of novae and supernovae.
Close double neutron stars have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational-wave sources. They are believed to have experienced at least one common-envelope episode during thei r evolution prior to double neutron star formation. In the last decades there have been numerous efforts to understand the details of the common-envelope phase, but its computational modelling remains challenging. We present and discuss the properties of the donor and the binary at the onset of the Roche-lobe overflow leading to these common-envelope episodes as predicted by rapid binary population synthesis models. These properties can be used as initial conditions for detailed simulations of the common-envelope phase. There are three distinctive populations, classified by the evolutionary stage of the donor at the moment of the onset of the Roche-lobe overflow: giant donors with fully-convective envelopes, cool donors with partially-convective envelopes, and hot donors with radiative envelopes. We also estimate that, for standard assumptions, tides would not circularise a large fraction of these systems by the onset of Roche-lobe overflow. This makes the study and understanding of eccentric mass-transferring systems relevant for double neutron star populations.
Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. We conclude that the massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.
Common-envelope evolution (CEE) is the short-lived phase in the life of an interacting binary-system during which two stars orbit inside a single shared envelope. Such evolution is thought to lead to the inspiral of the binary, the ejection of the ex tended envelope and the formation of a remnant short-period binary. However, detailed hydrodynamical models of CEE encounter major difficulties. They show that following the inspiral most of the envelope is not ejected; though it expands to larger separations, it remains bound to the binary. Here we propose that dust-driven winds can be produced following the CEE. These can evaporate the envelope following similar processes operating in the ejection of the envelopes of AGB stars. Pulsations in an AGB-star drives the expansion of its envelope, allowing the material to cool down to low temperatures thus enabling dust condensation. Radiation pressure on the dust accelerates it, and through its coupling to the gas it drives winds which eventually completely erode the envelope. We show that the inspiral phase in CE-binaries can effectively replace the role of stellar pulsation and drive the CE expansion to scales comparable with those of AGB stars, and give rise to efficient mass-loss through dust-driven winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا