ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared outbursts as potential tracers of common envelope events in high-mass X-ray binary formation

135   0   0.0 ( 0 )
 نشر من قبل Lidia Oskinova
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. We conclude that the massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.



قيم البحث

اقرأ أيضاً

214 - Sylvain Chaty 2014
In this review I first describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. I then report on the discovery of two new populations of HMXBs hosting supergiant stars, recently revealed by a wealth of new observations, coming from the high energy side (INTEGRAL, Swift, XMM, Chandra satellites), and complemented by multi-wavelength optical/infrared observations (mainly ESO facilities). The first population is constituted of obscured supergiant HMXBs, the second one of supergiant fast X-ray transients (SFXTs), exhibiting short and intense X-ray flares. I finally discuss the formation and evolution of HMXBs, constrain the accretion models (e.g. clumpy winds, transitory accretion disc, magneto-centrifugal barrier), show evidences suggesting the existence of an evolutionary link, include comparisons with population synthesis models, and finally build a consistent scenario explaining the various characteristics of these extreme celestial sources. Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of neutron star/black hole binary mergers, related to short/hard gamma-ray bursts, the knowledge of the nature, formation and evolution of these HMXB populations is of prime importance.
We have analyzed 3 observations of the High Mass X-ray Binary A0535+26 performed by the Rossi X-ray Timing Explorer (RXTE) 3, 5, and 6 months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Re-analysis of 2 earlier RXTE observations made 4 years after the 1994 outburst, original BeppoSAX observations 2 years later, re-analysis of 4 EXOSAT observations made 2 years after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ~2 to <1 x 10^{-11} ergs/cm2/s over 6.5 years after outburst. Detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built-up at the corotation radius or from an isotropic stellar wind.
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectrosc opy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium and neon whose strengths and presence depend on the overall level of absorption. They imply a co-existence of cool and hot gas phases in the system that we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.
Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our under standing of the spatial distribution and properties of young low-mass stars and protostars has been revolutionized by sensitive space-based observations at X-ray and IR wavelengths. By surveying spatial scales from clusters to molecular clouds, these data provide robust measurements of key star formation properties. Goal: with their large numbers and their presence in diverse environments, censuses of low mass stars and protostars can be used to measure the dependence of star formation on environmental properties, such as the density and temperature of the natal gas, strengths of the magnetic and radiation fields, and the density of stars. Here we summarize how such censuses can answer three basic questions: i.) how is the star formation rate influenced by environment, ii.) does the IMF vary with environment, and iii.) how does the environment shape the formation of bound clusters? Answering these questions is an important step toward understanding star and cluster formation across the extreme range of environments found in the Universe. Requirements: sensitivity and angular resolution improvements will allow us to study the full range of environments found in the Milky Way. High spatial dynamic range (< 1arcsec to > 1degree scales) imaging with space-based telescopes at X-ray, mid-IR, and far-IR and ground-based facilities at near-IR and sub-mm wavelengths are needed to identify and characterize young stars.
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا