ﻻ يوجد ملخص باللغة العربية
Let $A$ be a square complex matrix; $z_1$, ..., $z_{N}inmathbb C$ be arbitrary (possibly repetitive) points of interpolation; $f$ be an analytic function defined on a neighborhood of the convex hull of the union of the spectrum $sigma(A)$ of the matrix $A$ and the points $z_1$, ..., $z_{N}$; and the rational function $r=frac uv$ (with the degree of the numerator $u$ less than $N$) interpolates $f$ at these points (counted according to their multiplicities). Under these assumptions estimates of the kind $$ biglVert f(A)-r(A)bigrVertle max_{tin[0,1];muintext{convex hull}{z_1,z_{2},dots,z_{N}}}bigglVertOmega(A)[v(A)]^{-1} frac{bigl(vfbigr)^{{(N)}} bigl((1-t)mumathbf1+tAbigr)}{N!}biggrVert, $$ where $Omega(z)=prod_{k=1}^N(z-z_k)$, are proposed. As an example illustrating the accuracy of such estimates, an approximation of the impulse response of a dynamic system obtained using the reduced-order Arnoldi method is considered, the actual accuracy of the approximation is compared with the estimate based on this paper.
In this paper we introduce a family of rational approximations of the reciprocal of a $phi$-function involved in the explicit solutions of certain linear differential equations, as well as in integration schemes evolving on manifolds. The derivation
Let $T$ be a square matrix with a real spectrum, and let $f$ be an analytic function. The problem of the approximate calculation of $f(T)$ is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that $T$ is triang
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} righ
We derive a residual based a-posteriori error estimate for the outer normal derivative of approximations to Poissons problem. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher o
Fourier extension is an approximation method that alleviates the periodicity requirements of Fourier series and avoids the Gibbs phenomenon when approximating functions. We describe a similar extension approach using regular wavelet bases on a hyperc