ﻻ يوجد ملخص باللغة العربية
Let $T$ be a square matrix with a real spectrum, and let $f$ be an analytic function. The problem of the approximate calculation of $f(T)$ is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that $T$ is triangular and its diagonal entries $t_{ii}$ are arranged in increasing order. To avoid calculations using the differences $t_{ii}-t_{jj}$ with close (including equal) $t_{ii}$ and $t_{jj}$, it is proposed to represent $T$ in a block form and calculate the two main block diagonals using interpolating polynomials. The rest of the $f(T)$ entries can be calculated using the Parlett recurrence algorithm. It is also proposed to perform scalar operations (such as the building of interpolating polynomials) with an enlarged number of decimal digits.
Let $A$ be a square complex matrix; $z_1$, ..., $z_{N}inmathbb C$ be arbitrary (possibly repetitive) points of interpolation; $f$ be an analytic function defined on a neighborhood of the convex hull of the union of the spectrum $sigma(A)$ of the matr
The trace of a matrix function f(A), most notably of the matrix inverse, can be estimated stochastically using samples< x,f(A)x> if the components of the random vectors x obey an appropriate probability distribution. However such a Monte-Carlo sampli
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} righ
Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be non-robust in the presence of Neumann boundary conditions. In this paper we overcome this issue by formulating the RBF-generated finite difference
We present a new fast algorithm for computing the Boys function using nonlinear approximation of the integrand via exponentials. The resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed algorithms for the same purpose.