ترغب بنشر مسار تعليمي؟ اضغط هنا

An Efficient and Statistically Accurate Lagrangian Data Assimilation Algorithm with Applications to Discrete Element Sea Ice Models

72   0   0.0 ( 0 )
 نشر من قبل Shubin Fu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Lagrangian data assimilation of complex nonlinear turbulent flows is an important but computationally challenging topic. In this article, an efficient data-driven statistically accurate reduced-order modeling algorithm is developed that significantly accelerates the computational efficiency of Lagrangian data assimilation. The algorithm starts with a Fourier transform of the high-dimensional flow field, which is followed by an effective model reduction that retains only a small subset of the Fourier coefficients corresponding to the energetic modes. Then a linear stochastic model is developed to approximate the nonlinear dynamics of each Fourier coefficient. Effective additive and multiplicative noise processes are incorporated to characterize the modes that exhibit Gaussian and non-Gaussian statistics, respectively. All the parameters in the reduced order system, including the multiplicative noise coefficients, are determined systematically via closed analytic formulae. These linear stochastic models succeed in forecasting the uncertainty and facilitate an extremely rapid data assimilation scheme. The new Lagrangian data assimilation is then applied to observations of sea ice floe trajectories that are driven by atmospheric winds and turbulent ocean currents. It is shown that observing only about $30$ non-interacting floes in a $200$km$times200$km domain is sufficient to recover the key multi-scale features of the ocean currents. The additional observations of the floe angular displacements are found to be suitable supplements to the center-of-mass positions for improving the data assimilation skill. In addition, the observed large and small floes are more useful in recovering the large- and small-scale features of the ocean, respectively. The Fourier domain data assimilation also succeeds in recovering the ocean features in the areas where cloud cover obscures the observations.



قيم البحث

اقرأ أيضاً

Predicting changes in sea ice cover is critical for shipping, ecosystem monitoring, and climate modeling. Current sea ice models, however, predict more ice than is observed in the Arctic, and less in the Antarctic. Improving the fit of these physics- based models to observations is challenging because the models are expensive to run, and therefore expensive to optimize. Here, we construct a machine learning surrogate that emulates the effect of changing model physics on forecasts of sea ice area from the Los Alamos Sea Ice Model (CICE). We use the surrogate model to investigate the sensitivity of CICE to changes in the parameters governing: ices ridging and albedo; snows albedo, aging, and thermal conductivity; the effect of meltwater on albedo; and the effect of ponds on albedo. We find that CICEs sensitivity to these model parameters differs between hemispheres. We propose that future sea ice modelers separate the snow conductivity and snow grain size distributions on a seasonal and inter-hemispheric basis, and we recommend optimal values of these parameters. This will make it possible to make models that fit observations of both Arctic and Antarctic sea ice more closely. These results demonstrate that important aspects of the behavior of a leading sea ice model can be captured by a relatively simple support vector regression surrogate model, and that this surrogate dramatically increases the ease of tuning the full simulation.
1) The annual cycle of atmospheric methane in southern high latitudes is extremely highly correlated with Antarctic sea ice extent. 2) The annual cycle of atmospheric methane in the Arctic is highly correlated with Antarctic or Arctic plus Antarctic sea ice extent. 3) We propose the global annual cycle of atmospheric methane is largely driven by Antarctic sea ice dynamics, with relatively stronger influence from other fluxes (probably the biota) in the Northern Hemisphere. 4) We propose degassing during sea ice freeze and temperature dependent solubility in the ocean dominate the annual methane cycle. 5) Results provide evidence that carbon cycle pathways, parameters and predictions must be reassessed.
We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parame ters are estimated based on tracer trajectories. We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap particle filter when the physical model exhibits chaotic advection.
118 - Hongpeng Sun 2020
Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The a ugmented Lagrangian method (also called as method of multipliers) is widely used for lots of smooth or nonsmooth variational problems. However, its efficiency usually heavily depends on solving the coupled and nonlinear system together and simultaneously, which is very complicated and highly coupled for total generalization variation. With efficient primal-dual semismooth Newton methods for the complicated linear subproblems involving total generalized variation, we investigated a highly efficient and competitive algorithm compared to some efficient first-order method. With the analysis of the metric subregularities of the corresponding functions, we give both the global convergence and local linear convergence rate for the proposed augmented Lagrangian methods.
A computationally efficient model is introduced to account for the sub-grid scale velocities of tracer particles dispersed in statistically homogeneous and isotropic turbulent flows. The model embeds the multi-scale nature of turbulent temporal and s patial correlations, that are essential to reproduce multi-particle dispersion. It is capable to describe the Lagrangian diffusion and dispersion of temporally and spatially correlated clouds of particles. Although the model neglects intermittent corrections, we show that pair and tetrad dispersion results nicely compare with Direct Numerical Simulations of statistically isotropic and homogeneous $3D$ turbulence. This is in agreement with recent observations that deviations from self-similar pair dispersion statistics are rare events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا