ﻻ يوجد ملخص باللغة العربية
Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The augmented Lagrangian method (also called as method of multipliers) is widely used for lots of smooth or nonsmooth variational problems. However, its efficiency usually heavily depends on solving the coupled and nonlinear system together and simultaneously, which is very complicated and highly coupled for total generalization variation. With efficient primal-dual semismooth Newton methods for the complicated linear subproblems involving total generalized variation, we investigated a highly efficient and competitive algorithm compared to some efficient first-order method. With the analysis of the metric subregularities of the corresponding functions, we give both the global convergence and local linear convergence rate for the proposed augmented Lagrangian methods.
Augmented Lagrangian method (also called as method of multipliers) is an important and powerful optimization method for lots of smooth or nonsmooth variational problems in modern signal processing, imaging, optimal control and so on. However, one usu
Support vector machines (SVMs) are successful modeling and prediction tools with a variety of applications. Previous work has demonstrated the superiority of the SVMs in dealing with the high dimensional, low sample size problems. However, the numeri
An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation
The octagonal shrinkage and clustering algorithm for regression (OSCAR), equipped with the $ell_1$-norm and a pair-wise $ell_{infty}$-norm regularizer, is a useful tool for feature selection and grouping in high-dimensional data analysis. The computa
Support vector machine (SVM) has proved to be a successful approach for machine learning. Two typical SVM models are the L1-loss model for support vector classification (SVC) and $epsilon$-L1-loss model for support vector regression (SVR). Due to the