ﻻ يوجد ملخص باللغة العربية
Using the simple (symmetric) Hubbard dimer, we analyze some important features of the $GW$ approximation. We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot $GW$ method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard $GW$ approximation and find, in particular, that i) some neutral excitation energies become complex when the electron-electron interaction $U$ increases, which can be traced back to the approximate nature of the $GW$ quasiparticle energies; ii) the BSE formalism yields accurate correlation energies over a wide range of $U$ when the trace (or plasmon) formula is employed; iii) the trace formula is sensitive to the occurrence of complex excitation energies (especially singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is more stable (yet less accurate); iv) the trace formula has the correct behavior for weak (ie, small $U$) interaction, unlike the ACFDT expression.
We report unphysical irregularities and discontinuities in some key experimentally-measurable quantities computed within the GW approximation of many-body perturbation theory applied to molecular systems. In particular, we show that the solution obta
A new class of orbital-dependent exchange-correlation (xc) potentials for applications in noncollinear spin-density-functional theory is developed. Starting from the optimized effective potential (OEP) formalism for the exact exchange potential - gen
We check the ab initio GW approximation and Bethe-Salpeter equation (BSE) many-body methodology against the exact solution benchmark of the hydrogen molecule H$_2$ ground state and excitation spectrum, and in comparison with the configuration interac
Following the recent work of Eriksen et al. [arXiv:2008.02678], we report the performance of the textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method on the non-relativistic frozen-core correlation energy o
Charged excitations of the oligoacene family of molecules, relevant for astrophysics and technological applications, are widely studied and therefore provide an excellent system for benchmarking theoretical methods. In this work, we evaluate the perf