ﻻ يوجد ملخص باللغة العربية
We estimate effective temperature ($T_{rm eff}$), stellar radius, and luminosity for a sample of 271 M-dwarf stars (M0V-M7V) observed as a part of CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) radial-velocity planet survey. For the first time, using the simultaneously observed high resolution (R$sim90000$) spectra in the optical (0.52 - 0.96 $mu$m) and near-infrared (0.96 - 1.71 $mu$m) bands, we derive empirical calibration relationships to estimate the fundamental parameters of these low-mass stars. We select a sample of nearby and bright M-dwarfs as our calibrators for which the physical parameters are acquired from high-precision interferometric measurements. To identify the most suitable indicators of $T_{rm eff}$, radius, and luminosity (log $L/L_{odot}$), we inspect a range of spectral features and assess them for reliable correlations. We perform multivariate linear regression and find that the combination of pseudo equivalent widths and equivalent width ratios of the Ca II at 0.854 $mu$m and Ca II at 0.866 $mu$m lines in the optical and the Mg I line at 1.57 $mu$m in the NIR give the best fitting linear functional relations for the stellar parameters with root mean square errors (RMSE) of 99K, 0.06 $R_{odot}$ and 0.22 dex respectively. We also explore and compare our results with literature values obtained using other different methods for the same sample of M dwarfs.
We report on 13 new high-precision measurements of stellar diameters for low-mass dwarfs obtained by means of near-infrared long-baseline interferometry with PIONIER at the Very Large Telescope Interferometer. Together with accurate parallaxes from G
We present the results of high resolution (R$ge$30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in optical/near-IR with the BOES,
Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 53
We present the optical spectra of 338 nearby M dwarfs, and compute their spectral types, effective temperatures ($T_{mathrm{eff}}$), and radii. Our spectra have been obtained using several optical spectrometers with spectral resolutions that range fr
M-dwarf stars provide very favourable conditions to find habitable worlds beyond our solar system. The estimation of the fundamental parameters of the transiting exoplanets rely on the accuracy of the theoretical predictions for radius and effective