ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating $T_{rm eff}$, radius and luminosity of M-dwarfs using high resolution optical and NIR spectral features

73   0   0.0 ( 0 )
 نشر من قبل Dhrimadri Khata
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate effective temperature ($T_{rm eff}$), stellar radius, and luminosity for a sample of 271 M-dwarf stars (M0V-M7V) observed as a part of CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) radial-velocity planet survey. For the first time, using the simultaneously observed high resolution (R$sim90000$) spectra in the optical (0.52 - 0.96 $mu$m) and near-infrared (0.96 - 1.71 $mu$m) bands, we derive empirical calibration relationships to estimate the fundamental parameters of these low-mass stars. We select a sample of nearby and bright M-dwarfs as our calibrators for which the physical parameters are acquired from high-precision interferometric measurements. To identify the most suitable indicators of $T_{rm eff}$, radius, and luminosity (log $L/L_{odot}$), we inspect a range of spectral features and assess them for reliable correlations. We perform multivariate linear regression and find that the combination of pseudo equivalent widths and equivalent width ratios of the Ca II at 0.854 $mu$m and Ca II at 0.866 $mu$m lines in the optical and the Mg I line at 1.57 $mu$m in the NIR give the best fitting linear functional relations for the stellar parameters with root mean square errors (RMSE) of 99K, 0.06 $R_{odot}$ and 0.22 dex respectively. We also explore and compare our results with literature values obtained using other different methods for the same sample of M dwarfs.



قيم البحث

اقرأ أيضاً

We report on 13 new high-precision measurements of stellar diameters for low-mass dwarfs obtained by means of near-infrared long-baseline interferometry with PIONIER at the Very Large Telescope Interferometer. Together with accurate parallaxes from G aia DR2, these measurements provide precise estimates for their linear radii, effective temperatures, masses, and luminosities. This allows us to refine the effective temperature scale, in particular towards the coolest M-dwarfs. We measure for late-type stars with enhanced metallicity slightly inflated radii, whereas for stars with decreased metallicity we measure smaller radii. We further show that Gaia DR2 effective temperatures for M-dwarfs are underestimated by $sim$ 8.2 % and give an empirical $M_{G}$-$T_{rm eff}$ relation which is better suited for M-dwarfs with $T_{rm eff}$ between 2600 and 4000 K. Most importantly, we are able to observationally identify a discontinuity in the $T_{rm eff}$-radius plane, which is likely due to the transition from partially convective M-dwarfs to the fully convective regime. We found this transition to happen between 3200 K and 3340 K, or equivalently for stars with masses $approx 0.23 M_{odot}$. We find that in this transition region the stellar radii are in the range from 0.18 to 0.42$R_{odot}$ for similar stellar effective temperatures.
We present the results of high resolution (R$ge$30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in optical/near-IR with the BOES, HET-HRS, and IGRINS spectrographs, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first two years. The Half-Width at Half-Depth (HWHD) of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s$^{-1}$ while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s$^{-1}$. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 $textit{R}_{odot}$, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.
239 - V. Neves 2014
Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 53 0-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and $T_{eff}$. Results. Our technique achieves a $rms$ of 0.08$pm$0.01 for [Fe/H], 91$pm$13 K for $T_{eff}$, and is valid in the (-0.85, 0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], $T_{eff}$ and spectral type respectively. We also calculated the RMSE$_{V}$ which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with $log{L_{H_{alpha}}/L_{bol}} < -4.0$. Our method is available online at url{http://www.astro.up.pt/resources/mcal}.
We present the optical spectra of 338 nearby M dwarfs, and compute their spectral types, effective temperatures ($T_{mathrm{eff}}$), and radii. Our spectra have been obtained using several optical spectrometers with spectral resolutions that range fr om 1200 to 10000. As many as 97% of the observed M-type dwarfs have a spectral type of M3-M6, with a typical error of 0.4 sub-type, among which the spectral types M4-M5 are the most common. We infer the $T_{mathrm{eff}}$ of our sample by fitting our spectra with theoretical spectra from the PHOENIX model. Our inferred $T_{mathrm{eff}}$ is calibrated with the optical spectra of M dwarfs whose $T_{mathrm{eff}}$ have been well determined with the calibrations that are supported by previous interferometric observations. Our fitting procedures utilize the VO absorption band (7320-7570 {AA}) and the optical region (5000-8000 {AA}), yielding typical errors of 128 K (VO band) and 85 K (optical region). We also determine the radii of our sample from their spectral energy distributions (SEDs). We find most of our sample stars have radii of $<$ 0.6 $R_odot$, with the average error being 3%. Our catalog enables efficient sample selection for exoplanet surveys around nearby M-type dwarfs.
M-dwarf stars provide very favourable conditions to find habitable worlds beyond our solar system. The estimation of the fundamental parameters of the transiting exoplanets rely on the accuracy of the theoretical predictions for radius and effective temperature of the host M-dwarf, hence the importance of multiple empirical tests of very low-mass star (VLM) models, the theoretical counterpart of M-dwarfs. Recent determinations of mass, radius and effective temperature of a sample of M-dwarfs of known metallicity have disclosed a supposed discontinuity in the effective temperature-radius diagram corresponding to a stellar mass of about 0.2Mo, that has been ascribed to the transition from partially convective to fully convective stars. In this paper we compare existing VLM models to these observations, and find that theory does not predict any discontinuity at around 0.2Mo, rather a smooth change of slope of the effective temperature-radius relationship around this mass value. The appearance of a discontinuity 5is due to naively fitting the empirical data with linear segments. Also, its origin is unrelated to the transition to fully convective structures. We find that this feature is instead an empirical signature for the transition to a regime where electron degeneracy provides an important contribution to the stellar EOS, and constitutes an additional test of the consistency of the theoretical framework for VLM models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا