ﻻ يوجد ملخص باللغة العربية
The optomechanical state transfer protocol provides effective, lossy, quantum beam-splitter-like dynamics where the strength of the coupling between the electromagnetic and mechanical modes is controlled by the optical steady-state amplitude. By restricting to a subspace with no losses, we argue that the transition from mode-hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a signature of the passive parity-time ($mathcal{PT}$) symmetry breaking transition in the underlying non-Hermitian quantum dimer. We compare the dynamics generated by the quantum open system (Langevin or Lindblad) approach to that of the $mathcal{PT}$-symmetric Hamiltonian, to characterize the cases where the two are identical. Additionally, we numerically explore the evolution of separable and correlated number states at zero temperature as well as thermal initial state evolution at room temperature. Our results provide a pathway for realizing non-Hermitian Hamiltonians in optomechanical systems at a quantum level.
We theoretically study the dynamics of typical optomechanical systems, consisting of a passive optical mode and an active mechanical mode, in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes. By fully analytical treatments for the dynami
A three level atom in $Lambda$ configuration is reduced to an effective two level system, under appropriate conditions, and its $mathcal{PT}$ symmetric properties are investigated. This effective qubit system when subjected to a beam-splitter type of
A protocol for explicitly constructing the exact time-evolution operators generated by $2 times 2$ time-dependent $PT$-symmetry Hamiltonians is reported. Its mathematical applicability is illustrated with the help of appropriate examples. The physica
Non-Hermitian systems with parity-time reversal ($mathcal{PT}$) or anti-$mathcal{PT}$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena. One of the most extraordinary features is the
The parity-time ($mathcal{PT}$) symmetric structures have exhibited potential applications in developing various robust quantum devices. In an optical trimmer with balanced loss and gain, we analytically study the $mathcal{PT}$ symmetric phase transi