ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient estimates for electric fields with multi-scale inclusions in the quasi-static regime

134   0   0.0 ( 0 )
 نشر من قبل Youjun Deng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we are concerned with the gradient estimate of the electric field due to two nearly touching dielectric inclusions, which is a central topic in the theory of composite materials. We derive accurate quantitative characterisations of the gradient fields in the transverse electromagnetic case within the quasi-static regime, which clearly indicate the optimal blowup rate or non-blowup of the gradient fields in different scenarios. There are mainly two novelties of our study. First, the sizes of the two material inclusions may be of different scales. Second, we consider our study in the quasi-static regime, whereas most of the existing studies are concerned with the static case.



قيم البحث

اقرأ أيضاً

For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients form bounded with respect to the Laplacian we obtain $L^q$-estimates for the gradients of solutions, and for the lower order coefficients from a Kato-type class we show that the solutions are Lipschitz continuous with respect to the space variable.
109 - Haigang Li , Zhiwen Zhao 2019
In high-contrast elastic composites, it is vitally important to investigate the stress concentration from an engineering point of view. The purpose of this paper is to show that the blowup rate of the stress depends not only on the shape of the inclu sions, but also on the given boundary data, when hard inclusions are close to matrix boundary. First, when the boundary of inclusion is partially relatively parallel to that of matrix, we establish the gradient estimates for Lam{e} systems with partially infinite coefficients and find that they are bounded for some boundary data $varphi$ while some $varphi$ will increase the blow-up rate. In order to identify such novel blowup phenomenon, we further consider the general $m$-convex inclusion cases and uncover the dependence of blow-up rate on the inclusions convexity $m$ and the boundary datas order of growth $k$ in all dimensions. In particular, the sharpness of these blow-up rates is also presented for some prescribed boundary data.
139 - Tuoc Phan 2017
This paper studies the Sobolev regularity estimates of weak solutions of a class of singular quasi-linear elliptic problems of the form $u_t - mbox{div}[mathbb{A}(x,t,u, abla u)]= mbox{div}[{mathbf F}]$ with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients $mathbb{A}$ are discontinuous and singular in $(x,t)$-variables, and dependent on the solution $u$. Global and interior weighted $W^{1,p}(Omega, omega)$-regularity estimates are established for weak solutions of these equations, where $omega$ is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for $omega =1$, because of the singularity of the coefficients in $(x,t)$-variables
We study the stationary Stokes system with Dini mean oscillation coefficients in a domain having $C^{1,rm{Dini}}$ boundary. We prove that if $(u, p)$ is a weak solution of the system with zero Dirichlet boundary condition, then $(Du,p)$ is continuous up to the boundary. We also prove a weak type-$(1,1)$ estimate for $(Du, p)$.
We study the stationary Stokes system in divergence form. The coefficients are assumed to be merely measurable in one direction and have Dini mean oscillations in the other directions. We prove that if $(u,p)$ is a weak solution of the system, then $ (Du,p)$ is bounded and its certain linear combinations are continuous. We also prove a weak type-$(1,1)$ estimate for $(Du,p)$ under a stronger assumption on the $L^1$-mean oscillation of the coefficients. The corresponding results up to the boundary on a half ball are also established. These results are new even for elliptic equations and systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا