ﻻ يوجد ملخص باللغة العربية
In this paper, we are concerned with the gradient estimate of the electric field due to two nearly touching dielectric inclusions, which is a central topic in the theory of composite materials. We derive accurate quantitative characterisations of the gradient fields in the transverse electromagnetic case within the quasi-static regime, which clearly indicate the optimal blowup rate or non-blowup of the gradient fields in different scenarios. There are mainly two novelties of our study. First, the sizes of the two material inclusions may be of different scales. Second, we consider our study in the quasi-static regime, whereas most of the existing studies are concerned with the static case.
For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients form bounded with respect to the Laplacian we obtain $L^q$-estimates for the gradients of solutions, and for
In high-contrast elastic composites, it is vitally important to investigate the stress concentration from an engineering point of view. The purpose of this paper is to show that the blowup rate of the stress depends not only on the shape of the inclu
This paper studies the Sobolev regularity estimates of weak solutions of a class of singular quasi-linear elliptic problems of the form $u_t - mbox{div}[mathbb{A}(x,t,u, abla u)]= mbox{div}[{mathbf F}]$ with homogeneous Dirichlet boundary conditions
We study the stationary Stokes system with Dini mean oscillation coefficients in a domain having $C^{1,rm{Dini}}$ boundary. We prove that if $(u, p)$ is a weak solution of the system with zero Dirichlet boundary condition, then $(Du,p)$ is continuous
We study the stationary Stokes system in divergence form. The coefficients are assumed to be merely measurable in one direction and have Dini mean oscillations in the other directions. We prove that if $(u,p)$ is a weak solution of the system, then $