ﻻ يوجد ملخص باللغة العربية
This paper studies the Sobolev regularity estimates of weak solutions of a class of singular quasi-linear elliptic problems of the form $u_t - mbox{div}[mathbb{A}(x,t,u, abla u)]= mbox{div}[{mathbf F}]$ with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients $mathbb{A}$ are discontinuous and singular in $(x,t)$-variables, and dependent on the solution $u$. Global and interior weighted $W^{1,p}(Omega, omega)$-regularity estimates are established for weak solutions of these equations, where $omega$ is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for $omega =1$, because of the singularity of the coefficients in $(x,t)$-variables
For a class of singular divergence type quasi-linear parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via the nonlinear Wolff potentials.
For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients form bounded with respect to the Laplacian we obtain $L^q$-estimates for the gradients of solutions, and for
For a class of divergence type quasi-linear degenerate parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via nonlinear Wolff potentials.
We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are begin{equation} u_t= abla cdot bigg( | abla u|^{p-2} abla u bigg), quad text{ for } quad 1<p<2, end
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are establis