We show that the cosmic bulk viscosity estimated in our previous works is sufficient to bridge the $H_0$ value inferred from observations of the early universe with the value inferred from the local (late) universe.
We present and constrain a cosmological model where the only component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a bulk viscosity coefficient
proportional to the Hubble parameter. The model is constrained using the SNe Ia Gold 2006 sample, the Cosmic Microwave Background (CMB) shift parameter R, the Baryon Acoustic Oscillation (BAO) peak A and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is constrained using the three cosmological tests together (SNe+CMB+BAO) we found: 1.- The model violates the SLT, 2.- It predicts a value of H_0 approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- We obtain a bad fit to data with a chi^2_{min} approx 532. These results indicate that this model is viable just if the bulk viscosity is triggered in recent times.
In this paper we give a physical explanation to the accelerated expansion of the Universe, alleviating the tension between the discrepancy of Hubble constant measurements. By the Euler Cauchy stress principle, we identify a controversy on the lack of
consideration of the surface forces contemplated in the study of the expansion of the Universe. We distinguish a new effect that modifies the spacetime fabric by means of the energy conservation equation. The resulting dynamical equations from the proposed hypothesis are contrasted to several testable astrophysical predictions. This paper also explains why we have not found any particle or fluid responsible for dark energy and clarifies the Cosmological Coincidence Problem. These explanations are achieved without assuming the existence of exotic matter of unphysical meaning or having to modify the Einsteins Field Equations.
The angular momentum of the Kerr singularity should not be larger than a threshold value so that it is enclosed by an event horizon: The Kerr singularity with the angular momentum exceeding the threshold value is naked. This fact suggests that if the
cosmic censorship exists in our Universe, an over-spinning body without releasing its angular momentum cannot collapse to spacetime singularities. A simple kinematical estimate of two particles approaching each other supports this expectation and suggests the existence of a minimum size of an over-spinning body. But this does not imply that the geometry near the naked singularity cannot appear. By analyzing initial data, i.e., a snapshot of a spinning body, we see that an over-spinning body may produce a geometry close to the Kerr naked singularity around itself at least as a transient configuration.
We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by
the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ``Union data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient zeta and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for zeta and the Hubble constant Ho are: zeta=1.922 pm 0.089 and Ho=69.62 pm 0.59 km/s/Mpc with a chi^2=314. The age of the universe is found to be 14.95 pm 0.42 Gyr. We see that the estimated value of Ho as well as of chi^2 are very similar to those obtained from LCDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of zeta is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter Ho in order to study the sensibility of the results to the way how Ho is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how Ho is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe.
The Hubble tension is shown to be solvable, without any free parameter, conceptually and quantitatively, within the approach of modified weak-field General Relativity involving the cosmological constant $Lambda$. That approach enables one to describe
in a unified picture both the dynamics of dark matter containing galaxies and the accelerated expansion of the Universe, thus defining a {it local} Hubble constant of a local flow and the {it global} one. The data on the dark matter content of peculiar galaxy samples are shown to be compatible to that unified picture. Future more refined surveys of galaxy distribution, hierarchical dynamics and flows within the vicinity of the Local group and the Virgo supercluster can be decisive in revealing the possible common nature of the dark sector.