ﻻ يوجد ملخص باللغة العربية
The Hubble tension is shown to be solvable, without any free parameter, conceptually and quantitatively, within the approach of modified weak-field General Relativity involving the cosmological constant $Lambda$. That approach enables one to describe in a unified picture both the dynamics of dark matter containing galaxies and the accelerated expansion of the Universe, thus defining a {it local} Hubble constant of a local flow and the {it global} one. The data on the dark matter content of peculiar galaxy samples are shown to be compatible to that unified picture. Future more refined surveys of galaxy distribution, hierarchical dynamics and flows within the vicinity of the Local group and the Virgo supercluster can be decisive in revealing the possible common nature of the dark sector.
In this paper we give a physical explanation to the accelerated expansion of the Universe, alleviating the tension between the discrepancy of Hubble constant measurements. By the Euler Cauchy stress principle, we identify a controversy on the lack of
Dark energy is one of the greatest scientific mysteries of today. The idea that dark energy originates from quantum vacuum fluctuations has circulated since the late 60s, but theoretical estimations of vacuum energy have disagreed with the measured v
We show that the cosmic bulk viscosity estimated in our previous works is sufficient to bridge the $H_0$ value inferred from observations of the early universe with the value inferred from the local (late) universe.
We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^4/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both
New interactions of neutrinos can stop them from free streaming even after the weak interaction freeze-out. This results in a phase shift in the cosmic microwave background (CMB) acoustic peaks which can alleviate the Hubble tension. In addition, the