ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to examine the opportunities and barriers of Integrated Human-Machine Intelligence (IHMI) in civil engineering. Integrating artificial intelligences high efficiency and repeatability with humans adaptability in various contexts can advance timely and reliable decision-making during civil engineering projects and emergencies. Successful cases in other domains, such as biomedical science, healthcare, and transportation, showed the potential of IHMI in data-driven, knowledge-based decision-making in numerous civil engineering applications. However, whether the industry and academia are ready to embrace the era of IHMI and maximize its benefit to the industry is still questionable due to several knowledge gaps. This paper thus calls for future studies in exploring the value, method, and challenges of applying IHMI in civil engineering. Our systematic review of the literature and motivating cases has identified four knowledge gaps in achieving effective IHMI in civil engineering. First, it is unknown what types of tasks in the civil engineering domain can be assisted by AI and to what extent. Second, the interface between human and AI in civil engineering-related tasks need more precise and formal definition. Third, the barriers that impede collecting detailed behavioral data from humans and contextual environments deserve systematic classification and prototyping. Lastly, it is unknown what expected and unexpected impacts will IHMI have on the AEC industry and entrepreneurship. Analyzing these knowledge gaps led to a list of identified research questions. This paper will lay the foundation for identifying relevant studies to form a research roadmap to address the four knowledge gaps identified.
Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these stakeholders de
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif
Recent work has demonstrated the promise of combining local explanations with active learning for understanding and supervising black-box models. Here we show that, under specific conditions, these algorithms may misrepresent the quality of the model
Along with the development of modern computing technology and social sciences, both theoretical research and practical applications of social computing have been continuously extended. In particular with the boom of artificial intelligence (AI), soci
Civil Asset Forfeiture (CAF) is a longstanding and controversial legal process viewed on the one hand as a powerful tool for combating drug crimes and on the other hand as a violation of the rights of US citizens. Data used to support both sides of t