ترغب بنشر مسار تعليمي؟ اضغط هنا

Remember What You have drawn: Semantic Image Manipulation with Memory

392   0   0.0 ( 0 )
 نشر من قبل Zhonghua Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image manipulation with natural language, which aims to manipulate images with the guidance of language descriptions, has been a challenging problem in the fields of computer vision and natural language processing (NLP). Currently, a number of efforts have been made for this task, but their performances are still distant away from generating realistic and text-conformed manipulated images. Therefore, in this paper, we propose a memory-based Image Manipulation Network (MIM-Net), where a set of memories learned from images is introduced to synthesize the texture information with the guidance of the textual description. We propose a two-stage network with an additional reconstruction stage to learn the latent memories efficiently. To avoid the unnecessary background changes, we propose a Target Localization Unit (TLU) to focus on the manipulation of the region mentioned by the text. Moreover, to learn a robust memory, we further propose a novel randomized memory training loss. Experiments on the four popular datasets show the better performance of our method compared to the existing ones.



قيم البحث

اقرأ أيضاً

Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
We study the problem of unlearning datapoints from a learnt model. The learner first receives a dataset $S$ drawn i.i.d. from an unknown distribution, and outputs a model $widehat{w}$ that performs well on unseen samples from the same distribution. H owever, at some point in the future, any training datapoint $z in S$ can request to be unlearned, thus prompting the learner to modify its output model while still ensuring the same accuracy guarantees. We initiate a rigorous study of generalization in machine unlearning, where the goal is to perform well on previously unseen datapoints. Our focus is on both computational and storage complexity. For the setting of convex losses, we provide an unlearning algorithm that can unlearn up to $O(n/d^{1/4})$ samples, where $d$ is the problem dimension. In comparison, in general, differentially private learning (which implies unlearning) only guarantees deletion of $O(n/d^{1/2})$ samples. This demonstrates a novel separation between differential privacy and machine unlearning.
Understanding, reasoning, and manipulating semantic concepts of images have been a fundamental research problem for decades. Previous work mainly focused on direct manipulation on natural image manifold through color strokes, key-points, textures, an d holes-to-fill. In this work, we present a novel hierarchical framework for semantic image manipulation. Key to our hierarchical framework is that we employ a structured semantic layout as our intermediate representation for manipulation. Initialized with coarse-level bounding boxes, our structure generator first creates pixel-wise semantic layout capturing the object shape, object-object interactions, and object-scene relations. Then our image generator fills in the pixel-level textures guided by the semantic layout. Such framework allows a user to manipulate images at object-level by adding, removing, and moving one bounding box at a time. Experimental evaluations demonstrate the advantages of the hierarchical manipulation framework over existing image generation and context hole-filing models, both qualitatively and quantitatively. Benefits of the hierarchical framework are further demonstrated in applications such as semantic object manipulation, interactive image editing, and data-driven image manipulation.
Large datasets have been crucial to the success of deep learning models in the recent years, which keep performing better as they are trained with more labelled data. While there have been sustained efforts to make these models more data-efficient, t he potential benefit of understanding the data itself, is largely untapped. Specifically, focusing on object recognition tasks, we wonder if for common benchmark datasets we can do better than random subsets of the data and find a subset that can generalize on par with the full dataset when trained on. To our knowledge, this is the first result that can find notable redundancies in CIFAR-10 and ImageNet datasets (at least 10%). Interestingly, we observe semantic correlations between required and redundant images. We hope that our findings can motivate further research into identifying additional redundancies and exploiting them for more efficient training or data-collection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا