ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Hierarchical Semantic Image Manipulation through Structured Representations

79   0   0.0 ( 0 )
 نشر من قبل Seunghoon Hong
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding, reasoning, and manipulating semantic concepts of images have been a fundamental research problem for decades. Previous work mainly focused on direct manipulation on natural image manifold through color strokes, key-points, textures, and holes-to-fill. In this work, we present a novel hierarchical framework for semantic image manipulation. Key to our hierarchical framework is that we employ a structured semantic layout as our intermediate representation for manipulation. Initialized with coarse-level bounding boxes, our structure generator first creates pixel-wise semantic layout capturing the object shape, object-object interactions, and object-scene relations. Then our image generator fills in the pixel-level textures guided by the semantic layout. Such framework allows a user to manipulate images at object-level by adding, removing, and moving one bounding box at a time. Experimental evaluations demonstrate the advantages of the hierarchical manipulation framework over existing image generation and context hole-filing models, both qualitatively and quantitatively. Benefits of the hierarchical framework are further demonstrated in applications such as semantic object manipulation, interactive image editing, and data-driven image manipulation.



قيم البحث

اقرأ أيضاً

Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.
Assigning meaning to parts of image data is the goal of semantic image segmentation. Machine learning methods, specifically supervised learning is commonly used in a variety of tasks formulated as semantic segmentation. One of the major challenges in the supervised learning approaches is expressing and collecting the rich knowledge that experts have with respect to the meaning present in the image data. Towards this, typically a fixed set of labels is specified and experts are tasked with annotating the pixels, patches or segments in the images with the given labels. In general, however, the set of classes does not fully capture the rich semantic information present in the images. For example, in medical imaging such as histology images, the different parts of cells could be grouped and sub-grouped based on the expertise of the pathologist. To achieve such a precise semantic representation of the concepts in the image, we need access to the full depth of knowledge of the annotator. In this work, we develop a novel approach to collect segmentation annotations from experts based on psychometric testing. Our method consists of the psychometric testing procedure, active query selection, query enhancement, and a deep metric learning model to achieve a patch-level image embedding that allows for semantic segmentation of images. We show the merits of our method with evaluation on the synthetically generated image, aerial image and histology image.
Image manipulation with natural language, which aims to manipulate images with the guidance of language descriptions, has been a challenging problem in the fields of computer vision and natural language processing (NLP). Currently, a number of effort s have been made for this task, but their performances are still distant away from generating realistic and text-conformed manipulated images. Therefore, in this paper, we propose a memory-based Image Manipulation Network (MIM-Net), where a set of memories learned from images is introduced to synthesize the texture information with the guidance of the textual description. We propose a two-stage network with an additional reconstruction stage to learn the latent memories efficiently. To avoid the unnecessary background changes, we propose a Target Localization Unit (TLU) to focus on the manipulation of the region mentioned by the text. Moreover, to learn a robust memory, we further propose a novel randomized memory training loss. Experiments on the four popular datasets show the better performance of our method compared to the existing ones.
Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorit hms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا