ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenides (TMDs), such as MoS$_2$, are known to undergo a structural phase transformation as well as a change in the electronic conductivity upon Li intercalation. These properties make them candidates for charge-tunable ion-insertion materials that could be used in electro-chemical devices. In this work we study the phase stability and electronic structure of H and T$^prime$ Li-intercalated MoX$_2$ bilayers with X=S, Se, or Te. Using first-principles calculations in combination with classical and machine learning modeling approaches, we find that the H phase is more stable at low Li concentration for all X, and the critical Li concentration at which the T$^primeto$H transition occurs decreases with increasing mass of X. Furthermore the relative free energy of the two phases becomes less sensitive to Li insertion with increasing atomic mass of the chalcogen atom X. While the electronic conductivity increases with increasing ion concentration at low concentrations, we do not observe a (positive) conductivity jump at the phase transition from H to T$^prime$.
We use first-principles calculation within the density functional theory (DFT) to explore the electronic properties on stage-1 Li- and Li+-graphite-intercalation compounds (GIC) for different concentrations, LiCx/Li+Cx with x= 6,12,18,24,32 and 36. T
The essential properties of graphite-based 3D systems are thoroughly investigated by the first-principles method. Such materials cover a simple hexagonal graphite, a Bernal graphite, and the stage-1 to stage-4 Li/Li$^+$ graphite intercalation compoun
The influence of random interlayer exchange on the phase states of the simplest magnetic heterostructure consisting of two ferromagnetic Ising layers with large interaction radius is studied. It is shown that such system can exist in three magnetic p
Grain boundary migration is driven by the boundarys curvature and external loads such as temperature and stress. In intercalation electrodes an additional driving force results from Li-diffusion. That is, Li-intercalation induces volume expansion of
Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI3 is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose