ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Event Detection for Representative Load Signature Extraction

71   0   0.0 ( 0 )
 نشر من قبل Zuyi Li
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Event detection is the first step in event-based non-intrusive load monitoring (NILM) and it can provide useful transient information to identify appliances. However, existing event detection methods with fixed parameters may fail in case of unpredictable and complicated residential load changes such as high fluctuation, long transition, and near simultaneity. This paper proposes a dynamic time-window approach to deal with these highly complex load variations. Specifically, a window with adaptive margins, multi-timescale window screening, and adaptive threshold (WAMMA) method is proposed to detect events in aggregated home appliance load data with high sampling rate (>1Hz). The proposed method accurately captures the transient process by adaptively tuning parameters including window width, margin width, and change threshold. Furthermore, representative transient and steady-state load signatures are extracted and, for the first time, quantified from transient and steady periods segmented by detected events. Case studies on a 20Hz dataset, the 50Hz LIFTED dataset, and the 60Hz BLUED dataset show that the proposed method can robustly outperform other state-of-art event detection methods. This paper also shows that the extracted load signatures can improve NILM accuracy and help develop other applications such as load reconstruction to generate realistic load data for NILM research.



قيم البحث

اقرأ أيضاً

$textbf{Objective}$: To develop a multi-channel device event segmentation and feature extraction algorithm that is robust to changes in data distribution. $textbf{Methods}$: We introduce an adaptive transfer learning algorithm to classify and segment events from non-stationary multi-channel temporal data. Using a multivariate hidden Markov model (HMM) and Fishers linear discriminant analysis (FLDA) the algorithm adaptively adjusts to shifts in distribution over time. The proposed algorithm is unsupervised and learns to label events without requiring $textit{a priori}$ information about true event states. The procedure is illustrated on experimental data collected from a cohort in a human viral challenge (HVC) study, where certain subjects have disrupted wake and sleep patterns after exposure to a H1N1 influenza pathogen. $textbf{Results}$: Simulations establish that the proposed adaptive algorithm significantly outperforms other event classification methods. When applied to early time points in the HVC data the algorithm extracts sleep/wake features that are predictive of both infection and infection onset time. $textbf{Conclusion}$: The proposed transfer learning event segmentation method is robust to temporal shifts in data distribution and can be used to produce highly discriminative event-labeled features for health monitoring. $textbf{Significance}$: Our integrated multisensor signal processing and transfer learning method is applicable to many ambulatory monitoring applications.
101 - Lei Yan , Wei Tian , Jiayu Han 2021
Existing methods of non-intrusive load monitoring (NILM) in literatures generally suffer from high computational complexity and/or low accuracy in identifying working household appliances. This paper proposes an event-driven Factorial Hidden Markov m odel (eFHMM) for multiple appliances with multiple states in a household, aiming for low computational complexity and high load disaggregation accuracy. The proposed eFHMM decreases the computational complexity to be linear to the event number, which ensures online load disaggregation. Furthermore, the eFHMM is solved in two stages, where the first stage identifies state-changing appliance using transient signatures and the second stage confirms the inferred states using steady-state signatures. The combination of transient and steady-state signatures, which are extracted from transient and steady periods segmented by detected events, enhances the uniqueness of each state transition and associated appliances, which ensures accurate load disaggregation. The event-driven two-stage NILM solution, termed as eFHMM-TS, is naturally fit into an edge-cloud framework, which makes possible the real-world application of NILM. The proposed eFHMM-TS method is validated on the LIFTED and synD datasets. Results demonstrate that the eFHMM-TS method outperforms other methods and can be applied in practice.
In this paper, four adaptive radar architectures for target detection in heterogeneous Gaussian environments are devised. The first architecture relies on a cyclic optimization exploiting the Maximum Likelihood Approach in the original data domain, w hereas the second detector is a function of transformed data which are normalized with respect to their energy and with the unknown parameters estimated through an Expectation-Maximization-based alternate procedure. The remaining two architectures are obtained by suitably combining the estimation procedures and the detector structures previously devised. Performance analysis, conducted on both simulated and measured data, highlights that the architecture working in the transformed domain guarantees the constant false alarm rate property with respect to the interference power variations and a limited detection loss with respect to the other detectors, whose detection thresholds nevertheless are very sensitive to the interference power.
Epilepsy is a neurological disorder classified as the second most serious neurological disease known to humanity, after stroke. Localization of the epileptogenic zone is an important step for epileptic patient treatment, which starts with epileptic s pike detection. The common practice for spike detection of brain signals is via visual scanning of the recordings, which is a subjective and a very time-consuming task. Motivated by that, this paper focuses on using machine learning for automatic detection of epileptic spikes in magnetoencephalography (MEG) signals. First, we used the Position Weight Matrix (PWM) method combined with a uniform quantizer to generate useful features. Second, the extracted features are classified using a Support Vector Machine (SVM) for the purpose of epileptic spikes detection. The proposed technique shows great potential in improving the spike detection accuracy and reducing the feature vector size. Specifically, the proposed technique achieved average accuracy up to 98% in using 5-folds cross-validation applied to a balanced dataset of 3104 samples. These samples are extracted from 16 subjects where eight are healthy and eight are epileptic subjects using a sliding frame of size of 100 samples-points with a step-size of 2 sample-points
Pathological Hand Tremor (PHT) is among common symptoms of several neurological movement disorders, which can significantly degrade quality of life of affected individuals. Beside pharmaceutical and surgical therapies, mechatronic technologies have b een utilized to control PHTs. Most of these technologies function based on estimation, extraction, and characterization of tremor movement signals. Real-time extraction of tremor signal is of paramount importance because of its application in assistive and rehabilitative devices. In this paper, we propose a novel on-line adaptive method which can adjust the hyper-parameters of the filter to the variable characteristics of the tremor. The proposed WAKE: Wavelet decomposition coupled with Adaptive Kalman filtering technique for pathological tremor Extraction, referred to as the WAKE framework is composed of a new adaptive Kalman filter and a wavelet transform core to provide indirect prediction of the tremor, one sample ahead of time, to be used for its suppression. In this paper, the design, implementation and evaluation of WAKE are given. The performance is evaluated based on three different datasets, the first one is a synthetic dataset, developed in this work, that simulates hand tremor under ten different conditions. The second and third ones are real datasets recorded from patients with PHTs. The results obtained from the proposed WAKE framework demonstrate significant improvements in the estimation accuracy in comparison with two well regarded techniques in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا