ﻻ يوجد ملخص باللغة العربية
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. This work provides a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user friendly resource for beginners and experts alike.
Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations.
We use Luries symmetric monoidal envelope functor to give two new descriptions of $infty$-operads: as certain symmetric monoidal $infty$-categories whose underlying symmetric monoidal $infty$-groupoids are free, and as certain symmetric monoidal $inf
This is the first of a series of papers on enriched infinity categories, seeking to reduce enriched higher category theory to the higher algebra of presentable infinity categories, which is better understood and can be approached via universal proper
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is a
We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalizing the one introduced by Squier fo