ترغب بنشر مسار تعليمي؟ اضغط هنا

Enriched infinity categories I: enriched presheaves

196   0   0.0 ( 0 )
 نشر من قبل John Berman
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف John D. Berman




اسأل ChatGPT حول البحث

This is the first of a series of papers on enriched infinity categories, seeking to reduce enriched higher category theory to the higher algebra of presentable infinity categories, which is better understood and can be approached via universal properties. In this paper, we introduce enriched presheaves on an enriched infinity category. We prove analogues of most familiar properties of presheaves. For example, we compute limits and colimits of presheaves, prove that all presheaves are colimits of representable presheaves, and prove a version of the Yoneda lemma.



قيم البحث

اقرأ أيضاً

169 - V. Hinich 2018
We continue the study of enriched infinity categories, using a definition equivalent to that of Gepner and Haugseng. In our approach enriched infinity categories are associative monoids in an especially designed monoidal category of enriched quivers. We prove that, in case the monoidal structure in the basic category M comes from direct product, our definition is essentially equivalent to the approach via Segal objects. Furthermore, we compare our notion with the notion of category left-tensored over M, and prove a version of Yoneda lemma in this context. Version 2: An error in 2.6.2 corrected. Version 3: a few minor corrections. Version 4: Section 8 added, describing correspondences of enriched categories. In case the basic monoidal category M is a prototopos with a cartesian structure, we prove that the category of correspondences is equivalent to the category of enriched categories over [1]. Version 5: terminology changed (former bicartesian fibrations became bifibrations), a few misprints corrected. Version 6: Section 2.11 added, dealing with operadic sieves. A number of corrections and clarifications made per referees request. Version 7: final version, accepted to Advances in Math. Version 8: a minor correction of 2.8.9-2.8.10.
This work is the first one in a series, in which we develop a mathematical theory of enriched (braided) monoidal categories and their representations. In this work, we introduce the notion of the $E_0$-center ($E_1$-center or $E_2$-center) of an enri ched (monoidal or braided monoidal) category, and compute the centers explicitly when the enriched (braided monoidal or monoidal) categories are obtained from the canonical constructions. These centers have important applications in the mathematical theory of gapless boundaries of 2+1D topological orders and that of topological phase transitions in physics. They also play very important roles in the higher representation theory, which is the focus of the second work in the series.
Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be thought of as the partial identity that is defined to just the same degree as the original map. In this paper, we show that restriction categories can be identified with emph{enriched categories} in the sense of Kelly for a suitable enrichment base. By varying that base appropriately, we are also able to capture the notions of join and range restriction category in terms of enriched category theory.
169 - Rune Haugseng 2013
We prove a rectification theorem for enriched infinity-categories: If V is a nice monoidal model category, we show that the homotopy theory of infinity-categories enriched in V is equivalent to the familiar homotopy theory of categories strictly enri ched in V. It follows, for example, that infinity-categories enriched in spectra or chain complexes are equivalent to spectral categories and dg-categories. A similar method gives a comparison result for enriched Segal categories, which implies that the homotopy theories of n-categories and (infinity,n)-categories defined by iterated infinity-categorical enrichment are equivalent to those of more familia
We exhibit the cartesian differential categories of Blute, Cockett and Seely as a particular kind of enriched category. The base for the enrichment is the category of commutative monoids -- or in a straightforward generalisation, the category of modu les over a commutative rig $k$. However, the tensor product on this category is not the usual one, but rather a warping of it by a certain monoidal comonad $Q$. Thus the enrichment base is not a monoidal category in the usual sense, but rather a skew monoidal category in the sense of Szlachanyi. Our first main result is that cartesian differential categories are the same as categories with finite products enriched over this skew monoidal base. The comonad $Q$ involved is, in fact, an example of a differential modality. Differential modalities are a kind of comonad on a symmetric monoidal $k$-linear category with the characteristic feature that their co-Kleisli categories are cartesian differential categories. Using our first main result, we are able to prove our second one: that every small cartesian differential category admits a full, structure-preserving embedding into the cartesian differential category induced by a differential modality (in fact, a monoidal differential modality on a monoidal closed category -- thus, a model of intuitionistic differential linear logic). This resolves an important open question in this area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا