ﻻ يوجد ملخص باللغة العربية
In probability theory, the independence is a very fundamental concept, but with a little mystery. People can always easily manipulate it logistically but not geometrically, especially when it comes to the independence relationships among more that two variables, which may also involve conditional independence. Here I am particularly interested in visualizing Markov chains which have the well known memoryless property. I am not talking about drawing the transition graph, instead, I will draw all events of the Markov process in a single plot. Here, to simplify the question, this work will only consider dichotomous variables, but all the methods actually can be generalized to arbitrary set of discrete variables.
In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in ter
We consider a generalization of the Ruelle theorem for the case of continuous time problems. We present a result which we believe is important for future use in problems in Mathematical Physics related to $C^*$-Algebras We consider a finite state set
We analyze some properties of maximizing stationary Markov probabilities on the Bernoulli space $[0,1]^mathbb{N}$, More precisely, we consider ergodic optimization for a continuous potential $A$, where $A: [0,1]^mathbb{N}to mathbb{R}$ which depends o
Most previous contributions to BSDEs, and the related theories of nonlinear expectation and dynamic risk measures, have been in the framework of continuous time diffusions or jump diffusions. Using solutions of BSDEs on spaces related to finite state
Stochastic Stokes drift and hypersensitive transport driven by dichotomous noise are theoretically investigated. Explicit mathematical expressions for the asymptotic probability density and drift velocity are derived including the situation in which