ﻻ يوجد ملخص باللغة العربية
In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in terms of (generalized) Doob transforms, which then leads to a stronger classification result for the associated operator algebras in terms of spectral radius and strong Liouville property. Furthermore, we characterize the non-commutative peak points of the associated operator algebra in a way that allows one to determine them from inspecting the matrix. This leads to a concrete analogue of the maximum modulus principle for computing the norm of operators in the ampliated operator algebras.
We adapt the theory of chordal Loewner chains to the operator-valued matricial upper-half plane over a $C^*$-algebra $mathcal{A}$. We define an $mathcal{A}$-valued chordal Loewner chain as a subordination chain of analytic self-maps of the $mathcal{A
We study $N$-ary non-commutative notions of independence, which are given by trees and which generalize free, Boolean, and monotone independence. For every rooted subtree $mathcal{T}$ of the $N$-regular tree, we define the $mathcal{T}$-free product o
The purpose of this short note was to outline the current status, then in 2011, of some research programs aiming at a categorification of parts of A.Connes non-commutative geometry and to provide an outlook on some possible subsequent developments in categorical non-commutative geometry.
In the present paper we study a unified approach for Quantum Markov Chains. A new quantum Markov property that generalizes the old one, is discussed. We introduce Markov states and chains on general local algebras, possessing a generic algebraic prop
In probability theory, the independence is a very fundamental concept, but with a little mystery. People can always easily manipulate it logistically but not geometrically, especially when it comes to the independence relationships among more that tw