ﻻ يوجد ملخص باللغة العربية
We consider the $[0,1]$-valued solution $(u_{t,x}:tgeq 0, xin mathbb R)$ to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise [ partial_t u = partial_x^2 u + f(u) + epsilon sqrt{u(1-u)} dot W. ] Here, $W$ is a space-time white noise, $epsilon > 0$ is the noise strength, and $f$ is a continuous function on $[0,1]$ satisfying $sup_{zin [0,1]}|f(z)|/ sqrt{z(1-z)} < infty.$ We assume the initial data satisfies $1 - u_{0,-x} = u_{0,x} = 0$ for $x$ large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021), no. 2) that the front of $u_t$ propagates with a finite deterministic speed $V_{f,epsilon}$, and under slightly stronger conditions on $f$, the asymptotic behavior of $V_{f,epsilon}$ was derived as the noise strength $epsilon$ approaches $infty$. In this paper we complement the above result by obtaining the asymptotic behavior of $V_{f,epsilon}$ as the noise strength $epsilon$ approaches $0$: for a given $pin [1/2,1)$, if $f(z)$ is non-negative and is comparable to $z^p$ for sufficiently small $z$, then $V_{f,epsilon}$ is comparable to $epsilon^{-2frac{1-p}{1+p}}$ for sufficiently small $epsilon$.
In this paper we solve a selection problem for multidimensional SDE $d X^varepsilon(t)=a(X^varepsilon(t)) d t+varepsilon sigma(X^varepsilon(t)), d W(t)$, where the drift and diffusion are locally Lipschitz continuous outside of a fixed hyperplane
We prove absolute continuity of the law of the solution, evaluated at fixed points in time and space, to a parabolic dissipative stochastic PDE on $L^2(G)$, where $G$ is an open bounded domain in $mathbb{R}^d$ with smooth boundary. The equation is dr
We study the stability of reaction-diffusion equations in presence of noise. The relationship of stability of solutions between the stochastic ordinary different equations and the corresponding stochastic reaction-diffusion equation is firstly establ
We study the limit behavior of differential equations with non-Lipschitz coefficients that are perturbed by a small self-similar noise. It is proved that the limiting process is equal to the maximal solution or minimal solution with certain probabili
We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form $u_t + mu phi(u) u_x = u_{xx} +f(u)$ for positive reaction terms with $f(0 >0$. The function $phi(u)$ is continuous and vanishes at $u=0$. A varia