ترغب بنشر مسار تعليمي؟ اضغط هنا

On regularization by a small noise of multidimensional ODEs with non-Lipschitz coefficients

274   0   0.0 ( 0 )
 نشر من قبل Andrey Pilipenko
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we solve a selection problem for multidimensional SDE $d X^varepsilon(t)=a(X^varepsilon(t)) d t+varepsilon sigma(X^varepsilon(t)), d W(t)$, where the drift and diffusion are locally Lipschitz continuous outside of a fixed hyperplane $H$. It is assumed that $X^varepsilon(0)=x^0in H$, the drift $a(x)$ has a Hoelder asymptotics as $x$ approaches $H$, and the limit ODE $d X(t)=a(X(t)), d t$ does not have a unique solution. We show that if the drift pushes the solution away of $H$, then the limit process with certain probabilities selects some extreme solutions to the limit ODE. If the drift attracts the solution to $H$, then the limit process satisfies an ODE with some averaged coefficients. To prove the last result we formulate an averaging principle, which is quite general and new.



قيم البحث

اقرأ أيضاً

We study the limit behavior of differential equations with non-Lipschitz coefficients that are perturbed by a small self-similar noise. It is proved that the limiting process is equal to the maximal solution or minimal solution with certain probabili ties $p_+$ and $p_-=1-p_+$, respectively. We propose a space-time transformation that reduces the investigation of the original problem to the study of the exact growth rate of a solution to a certain SDE with self-similar noise. This problem is interesting in itself. Moreover, the probabilities $p_+$ and $p_-$ coincide with probabilities that the solution of the transformed equation converges to $+infty$ or $-infty$ as $ttoinfty,$ respectively.
We study ODEs with vector fields given by general Schwartz distributions, and we show that if we perturb such an equation by adding an infinitely regularizing path, then it has a unique solution and it induces an infinitely smooth flow of diffeomorph isms. We also introduce a criterion under which the sample paths of a Gaussian process are infinitely regularizing, and we present two processes which satisfy our criterion. The results are based on the path-wise space-time regularity properties of local times, and solutions are constructed using the approach of Catellier-Gubinelli based on non-linear Young integrals.
We consider the $[0,1]$-valued solution $(u_{t,x}:tgeq 0, xin mathbb R)$ to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise [ partial_t u = partial_x^2 u + f(u) + epsilon sqrt{u(1-u)} dot W. ] Here, $W$ is a space- time white noise, $epsilon > 0$ is the noise strength, and $f$ is a continuous function on $[0,1]$ satisfying $sup_{zin [0,1]}|f(z)|/ sqrt{z(1-z)} < infty.$ We assume the initial data satisfies $1 - u_{0,-x} = u_{0,x} = 0$ for $x$ large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021), no. 2) that the front of $u_t$ propagates with a finite deterministic speed $V_{f,epsilon}$, and under slightly stronger conditions on $f$, the asymptotic behavior of $V_{f,epsilon}$ was derived as the noise strength $epsilon$ approaches $infty$. In this paper we complement the above result by obtaining the asymptotic behavior of $V_{f,epsilon}$ as the noise strength $epsilon$ approaches $0$: for a given $pin [1/2,1)$, if $f(z)$ is non-negative and is comparable to $z^p$ for sufficiently small $z$, then $V_{f,epsilon}$ is comparable to $epsilon^{-2frac{1-p}{1+p}}$ for sufficiently small $epsilon$.
In this paper we study zero-noise limits of $alpha -$stable noise perturbed ODEs which are driven by an irregular vector field $A$ with asymptotics $% A(x)sim overline{a}(frac{x}{leftvert xrightvert })leftvert xrightvert ^{beta -1}x$ at zero, where $ overline{a}>0$ is a continuous function and $beta in (0,1)$. The results established in this article can be considered a generalization of those in the seminal works of Bafico cite% {Ba} and Bafico, Baldi cite{BB} to the multi-dimensional case. Our approach for proving these results is inspired by techniques in cite% {PP_self_similar} and based on the analysis of an SDE for $tlongrightarrow infty $, which is obtained through a transformation of the perturbed ODE.
The problem on identification of a limit of an ordinary differential equation with discontinuous drift that perturbed by a zero-noise is considered in multidimensional case. This problem is a classical subject of stochastic analysis. However the mult idimensional case was poorly investigated. We assume that the drift coefficient has a jump discontinuity along a hyperplane and is Lipschitz continuous in the upper and lower half-spaces. It appears that the behavior of the limit process depends on signs of the normal component of the drift at the upper and lower half-spaces in a neighborhood of the hyperplane, all cases are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا