ﻻ يوجد ملخص باللغة العربية
In this paper we have successfully established (from first principles) that anyons do live in a 2-dimensional {it{noncommutative}} space. We have directly computed the non-trivial uncertainty relation between anyon coordinates, ${sqrt{Delta x^2Delta y^2}}=Thetasigma$, using the recently constructed anyon wave function [J. Majhi, S. Ghosh and S.K. Maiti, Phys. Rev. Lett. textbf{123}, 164801 (2019)] cite{jan}, in the framework of I. Bialynicki-Birula and Z. Bialynicka-Birula, New J. Phys. textbf{21}, 07306 (2019) cite{bel}. Furthermore we also compute the Heisenberg uncertainty relation for anyon and as a consistency check, show that the results of cite{bel} prove that, as expected, electrons live in 3-dimensional commutative space.
Some aspects of the exotic particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models
The Moyal *-deformed noncommutative version of Burgers equation is considered. Using the *-analog of the Cole-Hopf transformation, the linearization of the model in terms of the linear heat equation is found. Noncommutative q-deformations of shock so
In this paper, we calculate the norm of the string Fourier transform on subfactor planar algebras and characterize the extremizers of the inequalities for parameters $0<p,qleq infty$. Furthermore, we establish R{e}nyi entropic uncertainty principles for subfactor planar algebras.
We show that it is in principle possible to construct dualities between commutative and non-commutative theories in a systematic way. This construction exploits a generalization of the exact renormalization group equation (ERG). We apply this to the
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $the