ﻻ يوجد ملخص باللغة العربية
We show that it is in principle possible to construct dualities between commutative and non-commutative theories in a systematic way. This construction exploits a generalization of the exact renormalization group equation (ERG). We apply this to the simple case of the Landau problem and then generalize it to the free and interacting non-canonical scalar field theory. This constructive approach offers the advantage of tracking the implementation of the Lorentz symmetry in the non-commutative dual theory. In principle, it allows for the construction of completely consistent non-commutative and non-local theories where the Lorentz symmetry and unitarity are still respected, but may be implemented in a highly non-trivial and non-local manner.
The effect of non-commutativity on electromagnetic waves violates Lorentz invariance: in the presence of a background magnetic induction field b, the velocity for propagation transverse to b differs from c, while propagation along b is unchanged. In
We discuss a non--commutative integration calculus arising in the mathematical description of anomalies in fermion--Yang--Mills systems. We consider the differential complex of forms $u_0ccr{eps}{u_1}cdotsccr{eps}{u_n}$ with $eps$ a grading operator
General non-commutative supersymmetric quantum mechanics models in two and three dimensions are constructed and some two and three dimensional examples are explicitly studied. The structure of the theory studied suggest other possible applications in
In this paper we study non-commutative massive unquenched Chern-Simons matter theory using its gravity dual. We construct this novel background by applying a TsT-transformation on the known parent commutative solution. We discuss several aspects of t
We compute the spectrum of cosmological perturbations in a scenario in which inflation is driven by radiation in a non-commutative space-time. In this scenario, the non-commutativity of space and time leads to a modified dispersion relation for radia