ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo study of the two-dimensional kinetic Blume-Capel model in a quenched random crystal field

81   0   0.0 ( 0 )
 نشر من قبل Nikolaos Fytas G.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random crystal-field coupling. We analyze the universality principles of this dynamic transition for various values of the crystal-field coupling at the originally second-order regime of the corresponding equilibrium phase diagram of the model. A detailed finite-size scaling analysis indicates that the observed nonequilibrium phase transition belongs to the universality class of the equilibrium Ising ferromagnet with additional logarithmic corrections in the scaling behavior of the heat capacity. Our results are in agreement with earlier works on kinetic Ising models.



قيم البحث

اقرأ أيضاً

Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat tice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of the pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement with an early real-space renormalization-group study of the model as well as a very recent numerical work where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning the control parameters of the randomness distribution we also qualitatively investigate the part of the phase diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence indicate a smoothening of the transition to second-order with the presence of strong scaling corrections.
146 - S.M. Pittman , G.G. Batrouni , 2008
Systems of particles in a confining potential exhibit a spatially dependent density which fundamentally alters the nature of phase transitions that occur. A specific instance of this situation, which is being extensively explored currently, concerns the properties of ultra-cold, optically trapped atoms. Of interest is how the superfluid-insulator transition is modified by the inhomogeneity, and, indeed, the extent to which a sharp transition survives at all. This paper explores a classical analog of these systems, the Blume-Capel model with a spatially varying single ion anisotropy and/or temperature gradient. We present results both for the nature of the critical properties and for the validity of the local density approximation which is often used to model the inhomogeneous case. We compare situations when the underlying uniform transition is first and second order.
We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of the pure model at both its firs t- and second-order transition regimes, as well as at the vicinity of the tricritical point. Our analysis benefits from the currently existing quite accurate estimates of the relevant (tri)critical-point locations. In all studied cases, the numerical results verify to a level of high accuracy the expected scenarios derived from analytic free-energy scaling arguments. We also investigate the size dependence of the interfacial adsorption under the presence of quenched bond randomness at the originally first-order transition regime (disorder-induced continuous transition) and the relevant self-averaging properties of the system. For this ex-first-order regime, where strong transient effects are shown to be present, our findings support the scenario of a non-divergent scaling, similar to that found in the original second-order transition regime of the pure model.
The effects of bond randomness on the universality aspects of the simple cubic lattice ferromagnetic Blume-Capel model are discussed. The system is studied numerically in both its first- and second-order phase transition regimes by a comprehensive fi nite-size scaling analysis. We find that our data for the second-order phase transition, emerging under random bonds from the second-order regime of the pure model, are compatible with the universality class of the 3d random Ising model. Furthermore, we find evidence that, the second-order transition emerging under bond randomness from the first-order regime of the pure model, belongs to a new and distinctive universality class. The first finding reinforces the scenario of a single universality class for the 3d Ising model with the three well-known types of quenched uncorrelated disorder (bond randomness, site- and bond-dilution). The second, amounts to a strong violation of universality principle of critical phenomena. For this case of the ex-first-order 3d Blume-Capel model, we find sharp differences from the critical behaviors, emerging under randomness, in the cases of the ex-first-order transitions of the corresponding weak and strong first-order transitions in the 3d three-state and four-state Potts models.
138 - N.G. Fytas 2010
We report on numerical simulations of the two-dimensional Blume-Capel ferromagnet embedded in the triangular lattice. The model is studied in both its first- and second-order phase transition regime for several values of the crystal field via a sophi sticated two-stage numerical strategy using the Wang-Landau algorithm. Using classical finite-size scaling techniques we estimate with high accuracy phase-transition temperatures, thermal, and magnetic critical exponents and we give an approximation of the phase diagram of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا