ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality aspects of the d=3 random-bond Blume-Capel model

175   0   0.0 ( 0 )
 نشر من قبل Anastasios Malakis
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of bond randomness on the universality aspects of the simple cubic lattice ferromagnetic Blume-Capel model are discussed. The system is studied numerically in both its first- and second-order phase transition regimes by a comprehensive finite-size scaling analysis. We find that our data for the second-order phase transition, emerging under random bonds from the second-order regime of the pure model, are compatible with the universality class of the 3d random Ising model. Furthermore, we find evidence that, the second-order transition emerging under bond randomness from the first-order regime of the pure model, belongs to a new and distinctive universality class. The first finding reinforces the scenario of a single universality class for the 3d Ising model with the three well-known types of quenched uncorrelated disorder (bond randomness, site- and bond-dilution). The second, amounts to a strong violation of universality principle of critical phenomena. For this case of the ex-first-order 3d Blume-Capel model, we find sharp differences from the critical behaviors, emerging under randomness, in the cases of the ex-first-order transitions of the corresponding weak and strong first-order transitions in the 3d three-state and four-state Potts models.



قيم البحث

اقرأ أيضاً

We report on large-scale Wang-Landau Monte Carlo simulations of the critical behavior of two spin models in two- (2d) and three-dimensions (3d), namely the 2d random-bond Ising model and the pure 3d Blume-Capel model at zero crystal-field coupling. T he numerical data we obtain and the relevant finite-size scaling analysis provide clear answers regarding the universality aspects of both models. In particular, for the random-bond case of the 2d Ising model the theoretically predicted strong universalitys hypothesis is verified, whereas for the second-order regime of the Blume-Capel model, the expected $d=3$ Ising universality is verified. Our study is facilitated by the combined use of the Wang-Landau algorithm and the critical energy subspace scheme, indicating that the proposed scheme is able to provide accurate results on the critical behavior of complex spin systems.
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat tice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of the pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement with an early real-space renormalization-group study of the model as well as a very recent numerical work where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning the control parameters of the randomness distribution we also qualitatively investigate the part of the phase diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence indicate a smoothening of the transition to second-order with the presence of strong scaling corrections.
Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is sof tened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior in the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale $L^{ast} approx 32$ for the chosen parameters.
158 - F.P. Fernandes , F.W.S. Lima , 2010
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi nt exponents are obtained. For the undi- rected case this random system belongs to the same universality class as the regular two-dimensional model. However, for the directed random lattice one has a second-order phase transition for q < qc and a first-order phase transition for q > qc, where qc is the critical rewiring probability. The critical exponents for q < qc was calculated and they do not belong to the same universality class as the regular two-dimensional ferromagnetic model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا